Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DifferentialGeometry[DGzip] - form a linear combination, wedge product or tensor product of a list of vectors, forms or tensors
Calling Sequence
DGzip(C, T, operand)
Parameters
C
-
a list of Maple expressions
T
a list of vectors, differential p-forms, or tensors (of the same type); the number of elements in C and T must be equal
operand
a string, one of "plus", "wedge", or "tensor"
Description
DGzip(C, T, "plus") returns the additive linear combination of the objects in T with coefficients taken from the list C.
DGzip(T, "wedge") returns the wedge product of the forms in T.
DGzip(T, "tensor") returns the tensor product of the tensors in the list T.
This command is part of the DifferentialGeometry package, and so can be used in the form DGzip(...) only after executing the command with(DifferentialGeometry). It can always be used in the long form DifferentialGeometry:-DGzip.
Examples
Initialize a 4-dimensional manifold M with coordinates [x, y, z, w].
Example 1.
Form a vector on M with arbitrary coefficients.
Example 2.
Generate a list of 6 coefficients using the seq command, generate a basis for the 2-forms on M using the GenerateForms command, and use DGzip to make a general 2-form on M.
Example 3.
Define the standard volume form on M.
Example 4.
Create the tensor product of a list of tensors.
See Also
DifferentialGeometry, &plus, &minus, &mult, &wedge, &tensor, evalDG, GetComponents
Download Help Document