Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DEtools[normalG2] - calculate the normal form of the generators of a 2-D solvable Lie algebra
Calling Sequence
normalG2(X1, X2, y(x))
Parameters
X1, X2
-
lists of the coefficients of symmetry generators (pairs of infinitesimals) as in
y(x)
'dependent variable'; it can be any indeterminate function of one variable
Description
The normalG2 command receives two pairs of infinitesimals, and an indication of the dependent variable y(x), and returns a sequence of infinitesimals , each one of the form , such that and are built using linear combinations of X1 and X2, and , where is the commutator of the two infinitesimals.
This command presently accepts only point symmetries, and when the given do not form a solvable algebra (the problem has no solution), the command returns FAIL.
This function is part of the DEtools package, and so it can be used in the form normalG2(..) only after executing the command with(DEtools). However, it can always be accessed through the long form of the command by using DEtools[normalG2](..).
Examples
X1 and X2 are not in "normal form"; that is, their commutator is not equal to one of them:
The normalized
The commutator of the generators satisfies .
See Also
DEtools, DEtools[Xcommutator], dsolve,Lie, PDEtools
Download Help Document