Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
linalg[smith] - compute the Smith normal form of a matrix
Calling Sequence
smith(A, x)
smith(A, x, U, V)
Parameters
A
-
square matrix of univariate polynomials in x
x
the variable name
U
name
V
Description
Important: The linalg package has been deprecated. Use the superseding packages, LinearAlgebra and VectorCalculus, instead.
- For information on migrating linalg code to the new packages, see examples/LinearAlgebraMigration.
The Smith normal form of a matrix with univariate polynomial entries in x over a field F is computed. Thus the polynomials are then regarded as elements of the Euclidean domain F[x].
This routine is only as powerful as Maple's normal function, since at present it only understands the field Q of rational numbers and rational functions over Q.
The Smith normal form of a matrix is a diagonal matrix S obtained by doing elementary row and column operations. The diagonal entries satisfy the following property for all : is equal to the (monic) greatest common divisor of all n by n minors of A.
In the case of four arguments, the third argument U and the fourth argument V will be assigned the transformation matrices on output, such that smith(A) = U &* A &* V.
The command with(linalg,smith) allows the use of the abbreviated form of this command.
Examples
See Also
linalg(deprecated)[hermite], linalg(deprecated)[ismith], LinearAlgebra, LinearAlgebra[SmithForm], Smith
Download Help Document