Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
linalg[norm] - norm of a matrix or vector
Calling Sequence
norm(A)
norm(A, normname)
Parameters
A
-
matrix or vector
normname
(optional) matrix/vector norm
Description
Important: The linalg package has been deprecated. Use the superseding packages, LinearAlgebra and VectorCalculus, instead.
- For information on migrating linalg code to the new packages, see examples/LinearAlgebraMigration.
The function norm(A, normname) computes the specified matrix or vector norm for the matrix or vector A.
For matrices, normname should be one of: 1, 2, 'infinity', 'frobenius'.
For vectors, normname should be one of: any real constants >=1, 'infinity', 'frobenius'.
The default norm used throughout the linalg package is the infinity norm. Thus norm(A) computes the infinity norm of A and is equivalent to norm(A, infinity).
For vectors, the infinity norm is the maximum magnitude of all elements. The infinity norm of a matrix is the maximum row sum, where the row sum is the sum of the magnitudes of the elements in a given row.
The frobenius norm of a matrix or vector is defined to be the square root of the sum of the squares of the magnitudes of each element.
The '1'-norm of a matrix is the maximum column sum, where the column sum is the sum of the magnitudes of the elements in a given column. The '2'-norm of a matrix is the square root of the maximum eigenvalue of the matrix .
For a positive integer k, the k-norm of a vector is the kth root of the sum of the magnitudes of each element raised to the kth power.
The command with(linalg,norm) allows the use of the abbreviated form of this command.
Examples
See Also
linalg(deprecated)[cond], LinearAlgebra, LinearAlgebra[ConditionNumber], LinearAlgebra[Norm], VectorCalculus[Norm]
Download Help Document