Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
genfunc[rgf_pfrac] - partial fractions over the complex numbers
Calling Sequence
rgf_pfrac(Fz, z)
rgf_pfrac(Fz, z, 'no_RootOf')
Parameters
Fz
-
rational generating function
z
name, generating function variable
Description
Computes the complete partial fraction expansion of Fz over the complex numbers.
The denominator of Fz is factored using factor. Any factors that are polynomials of degree 2 are then factored over the complex numbers. Any factors that are polynomials of degree greater than 2 are represented in factored form using Sum and RootOf expressions.
If the optional argument 'no_RootOf' is used, the denominator will be completely factored over the complex numbers. If the denominator cannot be factored, an inert Pfrac expression is returned.
The global variables _J and _R are used in the RootOf expressions.
The command with(genfunc,rgf_pfrac) allows the use of the abbreviated form of this command.
Examples
See Also
convert[parfrac], factor, genfunc, RootOf
Download Help Document