Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
chrem - Chinese Remainder Algorithm
Calling Sequence
chrem(u, m)
Parameters
u
-
list [u1,..., un] of evaluations
m
list of moduli [m1,..., mn]
Description
The list of moduli m must be pairwise relatively prime positive integers. Both lists u and m must be the same length . The list of images u need not be reduced modulo m on input. In the following, denotes the product of the moduli.
If u is a list of integers, chrem(u, m) computes the unique positive integer a such that , and .
If the global variable mod has been assigned to mods then the result is returned in the symmetric range for the integers modulo . For example, the symmetric range for the integers modulo is .
If u is a list of polynomials, chrem is applied across the polynomials so that the output is a polynomial satisfying , ..., .
If u is a list of lists, chrem is applied across the lists so that the output will be a list satisfying , ..., .
For a definition, see Chinese remainder theorem.
Examples
See Also
GaussInt, GIchrem
Download Help Document