Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
algcurves[singularities] - The singularities of an algebraic curve
Calling Sequence
singularities(f, x, y)
Parameters
f
-
a polynomial specifying an algebraic curve
x, y
variables
Description
Let f be a squarefree polynomial in x and y. Then f defines an algebraic curve in the plane C^2, and also in the projective plane P^2 by making f homogeneous. This procedure computes the singular points of the curve in the projective plane. The points are given by homogeneous co-ordinates [X,Y,Z].
For each singularity this procedure also computes the multiplicity , the delta invariant delta, and the number of local branches . An ordinary double point is characterized by . For a cusp one has . In general and , and both of these are equalities when the singularity is an ordinary -multiple point. The Milnor number equals .
The output of this procedure is a set consisting of lists of the following form .
This procedure computes all singularities up to conjugation. So if a singularity is given in the output, and if does not appear in the input, then is a singular point as well but will not be given in the output.
The genus of a curve is the number (d-1)*(d-2)/2 - Sum(delta invariants) where is the degree of the curve. Note that if we apply this formula to compute the genus, then for each singularity we must multiply the delta invariant by the degree of the algebraic extension over which the singularity is defined, because only one singularity of each conjugacy class is given in the output.
Examples
Note that the conjugate (replace by is also a singularity. So the genus is (5-1)*(5-2)/2-1-1-1-2*1=1
See Also
algcurves[genus], algcurves[puiseux], singular
Download Help Document