Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
algcurves[differentials] - Holomorphic differentials of an algebraic curve
Calling Sequence
differentials(f, x, y, opt)
Parameters
f
-
irreducible polynomial in x and y
x
variable
y
opt
optional argument to change the form of the output
Description
This command computes a basis of the holomorphic differentials of an irreducible algebraic curve f. Every holomorphic differential is of the form where is a polynomial in x,y of degree . Here is the degree of the curve.
If f is irreducible, then the dimension of the holomorphic differentials equals the genus of the curve; in other words, nops(differentials(f,x,y)) = genus(f,x,y).
If f has no singularities, then can be any polynomial in x,y of degree . So then the genus equals the number of monomials in x,y of degree , which is .
For a singular curve, each singularity poses delta (the delta-invariant) independent linear conditions on the coefficients of . So the genus equals minus the sum of the delta-invariants. If where m is the multiplicity of the singularity, then the linear conditions are equivalent with vanishing with multiplicity m-1 at that singularity. If , then additional linear conditions exist, which are computed using integral_basis.
The output of this command will be a basis for all , or a basis for all , in case a fourth argument skip_dx is given.
Examples
See Also
AIrreduc, algcurves[genus], algcurves[singularities]
Download Help Document