Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Student[NumericalAnalysis][IsMatrixShape] - Check whether a matrix is a certain shape or not
Calling Sequence
IsMatrixShape(A, shape)
Parameters
A
-
Matrix
shape
name; must be one of diagonal, strictlydiagonallydominant, diagonallydominant, hermitian, positivedefinite, symmetric, triangular[upper], triangular[lower], or tridiagonal
Description
The IsMatrixShape command verifies whether the matrix A is a certain "shape".
The only types of "shapes" that the IsMatrixShape command can verify are:
Diagonal : shape = diagonal
Strictly diagonally dominant : shape = strictlydiagonallydominant
Diagonally dominant : shape = diagonallydominant
Hermitian : shape = hermitian
Positive definite : shape = positivedefinite
Symmetric : shape = symmetric
Upper or lower triangular : shape = triangular[upper] or shape = triangular[lower], repectively
Tridiagonal : shape = tridiagonal
Notes
If neither upper nor lower is specified, the triangular option defaults to triangular[upper].
The Student[NumericalAnalysis] subpackage's definition of positive definiteness is as follows.
A complex n-by-n matrix A is positive definite if and only if A is Hermitian and for all n-dimensional complex vectors v, we have , where denotes the real part of a complex number.
A real n-by-n matrix A is positive definite if and only if A is symmetric and for all n-dimensional real vectors v, we have .
To check another "shape" that is not available with the Student[NumericalAnalysis][IsMatrixShape] command see the general IsMatrixShape command.
Examples
See Also
Student[NumericalAnalysis], Student[NumericalAnalysis][ComputationOverview]
Download Help Document