Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Statistics[OneSampleZTest] - apply the one sample z-test for the population mean of a sample
Calling Sequence
OneSampleZTest(X, mu0, sigma, test_options)
OneSampleZTest[SampleSize](width, sigma, samplesize_options)
Parameters
X
-
rtable; data sample
mu0
realcons; the test value for the mean
sigma
realcons; the standard deviation of the sample X was drawn from
test_options
(optional) equation(s) of the form option=value where option is one of alternative, confidence, ignore, output, or weights; specify options for the OneSampleZTest function
width
realcons; the desired width of the confidence interval
realcons; the known value of the standard deviation for the population
samplesize_options
(optional) an equation of the form confidence=value; specify options for the OneSampleZTest[SampleSize] utility function
Description
The OneSampleZTest function computes the one sample z-test upon a dataset X. This calculation is used to determine the significance of the difference between the sample mean and an assumed population mean when the standard deviation of the population is known.
The first parameter X is the data sample to use in the analysis.
The second parameter mu0 is the assumed population mean, specified as a real constant.
The third parameter sigma is the known population standard deviation, specified as a positive real constant.
The OneSampleZTest[SampleSize] utility computes the number of samples required in a data set in order to get a confidence interval with the specified width using this test.
The first parameter of the utility, width, specifies the desired width of the confidence interval (difference between the upper bound and the lower bound). This value must be strictly greater than 0.
The second parameter of the utility, sigma, is the known population standard deviation, specified as a positive real constant.
Test Options
The test_options argument can contain one or more of the options shown below.
alternative='twotailed', 'lowertail', or 'uppertail'
This option is used to specify the type or interval used in the analysis, or similarly, the alternative hypothesis to consider when performing the analysis.
confidence=float
This option is used to specify the confidence level of the interval and must be a floating-point value between 0 and 1. By default this is set to 0.95.
ignore=truefalse
This option is used to specify how to handle non-numeric data. If ignore is set to true all non-numeric items in data will be ignored.
output='report', 'statistic', 'pvalue', 'confidenceinterval', 'distribution', 'hypothesis', or list('statistic', 'pvalue', 'confidenceinterval', 'distribution', 'hypothesis')
This option is used to specify the desired format of the output from the function. If 'report' is specified then a module containing all output from this test is returned. If a single parameter name is specified other than 'report' then that quantity alone is returned. If a list of parameter names is specified then a list containing those quantities in the specified order will be returned.
weights=rtable
Vector of weights (one-dimensional rtable). If weights are given, the OneSampleZTest function will scale each data point to have given weight. Note that the weights provided must have type realcons and the results are floating-point, even if the problem is specified with exact values. Both the data array and the weights array must have the same number of elements.
Sample Size Options
The samplesize_options argument can contain one or more of the options shown below.
Notes
This test generates a complete report of all calculations in the form of a userinfo message. In order to access this report, specify infolevel[Statistics] := 1.
A weaker version of the z-test, the t-test is available if the standard deviation of the sample is not known.
Examples
Specify the data sample.
Calculate the one sample z-test on an array of values.
Standard Z-Test on One Sample ----------------------------- Null Hypothesis: Sample drawn from population with mean 5 and known standard deviation 5 Alt. Hypothesis: Sample drawn from population with mean not equal to 5 and known standard deviation 5 Sample size: 10 Sample mean: 7.6 Distribution: Normal(0,1) Computed statistic: 1.64438 Computed pvalue: 0.100097 Confidence interval: 4.50102483864317 .. 10.6989751613568 (population mean) Result: [Accepted] There is no statistical evidence against the null hypothesis
Calculate the lower tail z-test.
Standard Z-Test on One Sample ----------------------------- Null Hypothesis: Sample drawn from population with mean greater than 5 and known standard deviation 5 Alt. Hypothesis: Sample drawn from population with mean less than 5 and known standard deviation 5 Sample size: 10 Sample mean: 7.6 Distribution: Normal(0,1) Computed statistic: 1.64438 Computed pvalue: 0.949952 Confidence interval: -infinity .. 10.2007419392404 (population mean) Result: [Accepted] There is no statistical evidence against the null hypothesis
Calculate the upper tail z-test.
Standard Z-Test on One Sample ----------------------------- Null Hypothesis: Sample drawn from population with mean less than 5 and known standard deviation 5 Alt. Hypothesis: Sample drawn from population with mean greater than 5 and known standard deviation 5 Sample size: 10 Sample mean: 7.6 Distribution: Normal(0,1) Computed statistic: 1.64438 Computed pvalue: 0.0500484 Confidence interval: 4.99925806075965 .. infinity (population mean) Result: [Accepted] There is no statistical evidence against the null hypothesis
Calculate the number of samples required to compute a confidence interval of size 3.
See Also
Statistics, Statistics[Computation], Statistics[Tests][TwoSampleZTest]
References
Kanji, Gopal K. 100 Statistical Tests. London: SAGE Publications Ltd., 1994.
Sheskin, David J. Handbook of Parametric and Nonparametric Statistical Procedures. London: CRC Press, 1997.
Download Help Document