Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
RegularChains[FastArithmeticTools][IteratedResultantDim1] - iterated resultant of a polynomial w.r.t a one-dim regular chain
Calling Sequence
IteratedResultantDim1(f, rc, R, v)
IteratedResultantDim1(f, rc, R, v, bound)
Parameters
R
-
a polynomial ring
rc
a regular chain
f
a polynomial
v
variable of R
bound
an upper bound of the degree of the iterated resultant to be computed (optional)
Description
The function call IteratedResultantDim1(f, rc, R) returns the numerator of the iterated resultant of f w.r.t. rc, computed over the field of univariate rational functions in v and with coefficients in R. See the command IteratedResultant for a definition of the notion of an iterated resultant.
rc is assumed to be a one-dimensional normalized regular chain with v as free variable and f has positive degree w.r.t. v.
Moreover R must have a prime characteristic such that FFT-based polynomial arithmetic can be used for this actual computation. The higher the degrees of f and rc are, the larger must be such that divides . If the degree of f or rc is too large, then an error is raised.
The default value of bound is the product of the total degrees of the polynomials in rc and f.
The iterated resultant computed by the command IteratedResultant produces the same answer provided that all initials in the regular chain rc are equal to .
The interest of the function call IteratedResultantDim1(f, rc, R) resides in the fact that, if the polynomial f is regular modulo the saturated ideal of the regular chain rc, then the roots of the returned polynomial form the projection on the v-axis of the intersection of the hypersurface defined by f and the quasi-component defined by rc.
Examples
Define a ring of polynomials.
Define random dense polynomial and regular chain of R.
Compute the (numerator) of the iterated resultant
Compare with the generic algorithm (non-fast and non-modular algorithm) of the command IteratedResultant.
Check that the two results are equal, since here all initials are equal to 1.
See Also
IteratedResultant, IteratedResultantDim0 , RandomRegularChainDim1, RegularChains, ResultantBySpecializationCube, SubresultantChainSpecializationCube
Download Help Document