Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
RegularChains[ExtendedRegularGcd] - extended GCD of two polynomials with respect to a regular chain
Calling Sequence
ExtendedRegularGcd(p1, p2, v, rc, R)
ExtendedRegularGcd(p1, p2, v, rc, R, 'normalized'='yes')
ExtendedRegularGcd(p1, p2, v, rc, R, 'normalized'='strongly')
Parameters
R
-
polynomial ring
rc
regular chain of R
p1
polynomial of R
p2
v
variable of R
'normalized'='yes'
boolean flag (optional)
'normalized'='strongly'
Description
The function call ExtendedRegularGcd(p1, p2, v, rc, R) returns a list of pairs where , , are polynomials of R and is a regular chain of R.
For each pair, the polynomial is a GCD of p1 and p2 modulo the saturated ideal of .
For each pair, the polynomials , , satisfy modulo the saturated ideal of .
For each pair, the leading coefficient of the polynomial with respect to v is regular modulo the saturated ideal of .
The returned regular chains form a triangular decomposition of rc (in the sense of Kalkbrener).
If 'normalized'='yes' is present, the returned regular chains are normalized.
If 'normalized'='strongly' is present, the returned regular chains are strongly normalized.
If 'normalized'='yes' is present, rc must be normalized.
If 'normalized'='strongly' is present, rc must be strongly normalized.
v must be the common main variable of p1 and p2
The initials of p1 and p2 must be regular with respect to rc.
This command is part of the RegularChains package, so it can be used in the form ExtendedRegularGcd(..) only after executing the command with(RegularChains). However, it can always be accessed through the long form of the command by using RegularChains[ExtendedRegularGcd](..).
Examples
See Also
Chain, ChainTools, Empty, ExtendedNormalizedGcd, IsRegular, PolynomialRing, RegularChains, RegularGcd, Regularize, RegularizeInitial
References
Moreno Maza, M. "On triangular decompositions of algebraic varieties" Technical Report 4/99, NAG, UK, Presented at the MEGA-2000 Conference, Bath, UK. Available at http://www.csd.uwo.ca/~moreno.
Download Help Document