Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
PDEtools[ChangeSymmetry] - perform a change of variables on the infinitesimals of a symmetry generator
Calling Sequence
ChangeSymmetry(TR, S, ITR, DepVars, NewVars, 'options'='value')
Parameters
TR
-
a transformation equation or a set of them
S
a list with the infinitesimals of a symmetry generator or the corresponding infinitesimal generator differential operator
ITR
optional - the inverse transformation equation or a set of them
DepVars
optional - may be required, a function or a list of them indicating the (old) dependent variables of the problem
NewDepVars
optional - a function or a list of them representing the new dependent variables
jetnotation = ...
(optional) can be true (default, the notation found in S), false, jetvariables, jetvariableswithbrackets, jetnumbers or jetODE; to respectively return or not using the different jet notations available
output = ...
optional - can be list or operator, indicating the output to be a list of infinitesimal components or the corresponding infinitesimal generator diffential operator
simplifier = ...
optional - indicates the simplifier to be used instead of the default simplify/size
Description
The ChangeSymmetry command performs changes of variables in a list of infinitesimals of a symmetry generator or its corresponding infinitesimal generator differential operator. This transformation takes into account that the infinitesimals are coefficients of differentiation operators which are also changed by the transformation, thus contributing to the resulting infinitesimals in the new variables.
To avoid having to remember the optional keywords if you misspell the keyword, or just a portion of it, a matching against the correct keywords is performed, and when there is only one match, the input is automatically corrected.
Examples
Consider a PDE problem with two independent variables and one dependent variable, u(x, t), and consider the list of infinitesimals of a symmetry group
In the input above you can also pass the symmetry as without infinitesimals' labels, as in . The corresponding infinitesimal generator is
Consider now the following transformation to be applied to the infinitesimals S
A direct application of this transformation to each component of is incorrect because these infinitesimals are coefficients of differentiation operators in the infinitesimal generator above. That fact is taken into account by ChangeSymmetry; the syntax it uses is the same as that of PDEtools[dchange] and DEtools[Xchange]
You can change variables directly in the infinitesimal generator differential operator, in which case the output has the same format, is also a differential operator
You can also optionally request the output to be in list or operator format to override returning in the same format of the symmetry.
The transformation used in this example introduces the canonical coordinates of the symmetry group with infinitesimals S. That is why the result above is the normal form of the generator, all infinitesimals equal to 0 but for one equal to 1.
Consider now changing variables in a different symmetry, using the same transformation
Compare with the output in different jetnotation or in function notation (jetnotation = false); we also pass the symmetry without the infinitesimals' labels to save some keystrokes; correspondingly the output also comes without infinitesimals' labels
See Also
CanonicalCoordinates, InfinitesimalGenerator, PDEtools
Download Help Document