Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LinearFunctionalSystems[LogarithmicSolution] - return the logarithmic solution of a linear system of differential equations
Calling Sequence
LogarithmicSolution(sys, vars, opts)
LogarithmicSolution(A, x, case, opts)
Parameters
sys
-
list of equations; linear differential system
vars
list of function variables such as [y1(x), y2(x), ...]; variables to solve for
A
Matrix with rational elements
x
independent variable
case
'differential'; indicates the case of the system
opts
(optional) expression of the form hybrid=b where b is 'true' (default) if LinearFunctionalSystems[UniversalDenominator] (see below) should use hybrid method, false otherwise
Description
The LogarithmicSolution function returns the logarithmic solutions (that is, the solutions in Q(x)[log(x)]) of the specified linear differential system of equations with polynomial coefficients). If such a solution does not exist, then NULL is returned. If the denominator of the solutions cannot be bound then FAIL is returned.
The system parameter is entered either in list form (a list of equations sys and a list of function variables vars to solve for), or in matrix form (matrix A and the independent variable x).
The matrix form specifies the system , where L is the differential operator, is the vector of the functions to solve for, and A is a rational matrix.
For the matrix form of the calling sequence, the case of the system must be specified as 'differential'.
Logarithmic solution is a global problem which is an analog of the local one of finding regular solutions (see LinearFunctionalSystems[RegularSolution]). The logarithmic solutions are of the form where the are rational functions.
The solution involves arbitrary constants of the form _c1, _c2, etc.
The function first computes a universal denominator of the solution using LinearFunctionalSystems[UniversalDenominator]. Then the found denominator is substituted into the system and the resulted system is solved for the solution in Q[x][log(x)], which is performed by an algorithm analogous to one used in LinearFunctionalSystems[RegularSolution].
The error conditions associated with LogarithmicSolution include all those generated by LinearFunctionalSystems[Properties] as well as the following:
The system must be homogeneous.
The case must be differential.
This function is part of the LinearFunctionalSystems package, and so it can be used in the form LogarithmicSolution(..) only after executing the command with(LinearFunctionalSystems). However, it can always be accessed through the long form of the command by using the form LinearFunctionalSystems[LogarithmicSolution](..).
Examples
See Also
LinearFunctionalSystems[MatrixTriangularization], LinearFunctionalSystems[Properties], LinearFunctionalSystems[RationalSolution], LinearFunctionalSystems[RegularSolution], LinearFunctionalSystems[UniversalDenominator]
Download Help Document