Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Finance[OrnsteinUhlenbeckProcess] - create new Ornstein-Uhlenbeck process
Calling Sequence
OrnsteinUhlenbeckProcess(, mu, theta, sigma, opts)
Parameters
-
algebraic expression; initial value
mu
algebraic expression; long-running mean
theta
algebraic expression; the speed of mean reversion
sigma
algebraic expression; the volatility parameter
opts
(optional) equation(s) of the form option = value where option is scheme; specify options for the OrnsteinUhlenbeckProcess command
Description
The OrnsteinUhlenbeckProcess command creates an Ornstein-Uhlenbeck process. This is a stochastic process governed by the stochastic differential equation (SDE)
where theta, sigma, and mu are real constants.
The parameter defines the initial value of the underlying stochastic process.
The parameter theta is the speed of mean-reversion. The parameter mu is the long-running mean. The parameter sigma is the volatility. In general, theta, mu, and sigma can be any algebraic expressions. However, if the process is to be simulated, these parameters must be assigned numeric values.
The scheme option specifies the discretization scheme used for simulation of this process. By default the standard Euler scheme is used. When scheme is set to unbiased the transition density will be used to simulate a value given .
Options
scheme = unbiased or Euler -- This option specifies which discretization scheme should be used for simulating this process.
Compatibility
The Finance[OrnsteinUhlenbeckProcess] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
Examples
Here is an example using the transition density.
Here is a realization of the Ornstein-Uhlenbeck process as a subordinated Wiener process.
See Also
Finance[BlackScholesProcess], Finance[BrownianMotion], Finance[Diffusion], Finance[Drift], Finance[ExpectedValue], Finance[GeometricBrownianMotion], Finance[HullWhiteProcess], Finance[ItoProcess], Finance[SamplePath], Finance[SampleValues], Finance[SquareRootDiffusion], Finance[StochasticProcesses], Finance[WienerProcess]
References
Brigo, D., Mercurio, F., Interest Rate Models: Theory and Practice. New York: Springer-Verlag, 2001.
Glasserman, P., Monte Carlo Methods in Financial Engineering. New York: Springer-Verlag, 2004.
Hull, J., Options, Futures, and Other Derivatives, 5th. edition. Upper Saddle River, New Jersey: Prentice Hall, 2003.
Vasicek, O.A., An Equilibrium Characterization of the Term Structure, Journal of Financial Economics, 5 (1977), pp 177-188.
Download Help Document