Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Finance[Drift] - compute the drift component of an Ito process
Calling Sequence
Drift(X)
Drift(f, mu, sigma, X, t)
Parameters
X
-
stochastic process, expression involving stochastic variables
f
algebraic expression involving stochastic variables
mu
algebraic expression, drift term of the original process
sigma
algebraic expression, diffusion term of the original process
name, stochastic variable
t
name, time variable
Description
The Drift(X) calling sequence computes the drift term of an Ito process X. That is, given a process governed by the stochastic differential equation (SDE)
the Drift command will return .
The parameter X can be either a stochastic process or an expression involving stochastic variables. In the first case a Maple procedure is applied for computing the drift term. This procedure will accept two parameters: the value of the state variable and the time, and return the corresponding value of the drift. In the second case, Ito's lemma will be applied to calculate the drift term of X. Note that the Drift command will perform formal computations; the validity of these computations for a given function f will not be verified.
Compatibility
The Finance[Drift] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
Examples
The Drift command knows how to compute the drift for all supported Ito-type processes.
You can also use expressions involving stochastic variables.
The following example deals with two correlated one-dimensional Wiener processes.
See Also
Finance[BrownianMotion], Finance[CEVProcess], Finance[DeterministicProcess], Finance[Diffusion], Finance[GaussianShortRateProcess], Finance[GeometricBrownianMotion], Finance[HestonProcess], Finance[OrnsteinUhlenbeckProcess], Finance[SquareRootDiffusion], Finance[StochasticProcesses], Finance[WienerProcess]
References
Glasserman, P., Monte Carlo Methods in Financial Engineering. New York: Springer-Verlag, 2004.
Hull, J., Options, Futures, and Other Derivatives, 5th. edition. Upper Saddle River, New Jersey: Prentice Hall, 2003.
Kloeden, P., and Platen, E., Numerical Solution of Stochastic Differential Equations, New York: Springer-Verlag, 1999.
Download Help Document