Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Finance[BlackScholesGamma] - compute the Gamma of a European-style option with given payoff
Calling Sequence
BlackScholesGamma(, K, T, sigma, r, d, optiontype)
BlackScholesGamma(, P, T, sigma, r, d)
Parameters
-
algebraic expression; initial (current) value of the underlying asset
K
algebraic expression; strike price
T
algebraic expression; time to maturity
sigma
algebraic expression; volatility
r
algebraic expression; continuously compounded risk-free rate
d
algebraic expression; continuously compounded dividend yield
P
operator or procedure; payoff function
optiontype
call or put; option type
Description
The Gamma of an option or a portfolio of options is the sensitivity of the Delta to changes in the value of the underlying asset
The BlackScholesGamma command computes the Gamma of a European-style option with the specified payoff function.
The parameter is the initial (current) value of the underlying asset. The parameter T is the time to maturity in years.
The parameter K specifies the strike price if this is a vanilla put or call option. Any payoff function can be specified using the second calling sequence. In this case the parameter P must be given in the form of an operator, which accepts one parameter (spot price at maturity) and returns the corresponding payoff.
The sigma, r, and d parameters are the volatility, the risk-free rate, and the dividend yield of the underlying asset. These parameters can be given in either the algebraic form or the operator form. The parameter d is optional. By default, the dividend yield is taken to be 0.
Compatibility
The Finance[BlackScholesGamma] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
Examples
First you compute the Gamma of a European call option with strike price 100, which matures in 1 year. This will define the Gamma as a function of the risk-free rate, the dividend yield, and the volatility.
In this example you will use numeric values for the risk-free rate, the dividend yield, and the volatility.
You can also use the generic method in which the option is defined through its payoff function.
Here are similar examples for the European put option.
In this example, you will compute the Gamma of a strangle.
Check:
See Also
Finance[AmericanOption], Finance[BermudanOption], Finance[BlackScholesDelta], Finance[BlackScholesPrice], Finance[BlackScholesRho], Finance[BlackScholesTheta], Finance[BlackScholesVega], Finance[EuropeanOption], Finance[ImpliedVolatility], Finance[LatticePrice]
References
Hull, J., Options, Futures, and Other Derivatives, 5th. edition. Upper Saddle River, New Jersey: Prentice Hall, 2003.
Download Help Document