Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DifferentialGeometry:-Tools[DGmain]
Calling Sequence
DGmain:-export(args)
Parameters
export
-
one of: &mult, &plus, &minus, &tensor, &wedge, Hook, DGzip
args
the arguments appropriate for the DifferentialGeometry command of the same name
Description
The module DGmain contains DifferentialGeometry procedures identical to procedures in the DifferentialGeometry package -- the sole difference being that no argument checking or validation is performed by DGmain procedures. The DGmain procedures can therefore be used in programming situations where the arguments to the procedures &mult, &plus, &minus, &tensor, &wedge, Hook, DGzip are known to be valid.
This command is part of the DifferentialGeometry:-Tools package, and so can be used in the form DGmain:-&mult only after executing the commands with(DifferentialGeometry) and with(Tools) in that order. It can always be used in the long form DifferentialGeometry:-Tools:-DGmain:-&mult. The other valid exports work the same way.
Examples
Define a coordinate system [x, y, z, w].
Create two procedures which will determine the time needed to compute D_x + D_y + D_z + D_w:
Test1 := proc(n) local T, i; T := time(); for i to n do D_x &plus D_y &plus D_z &plus D_w; od; time() - T; end:
Test2 := proc(n) local T, i; T := time(); for i to n do DGmain:-`&plus`(DGmain:-`&plus`(DGmain:-`&plus`(D_x, D_y), D_z), D_w); od; time() - T; end:
We see that Test2, which uses DGmain, is faster.
See Also
DifferentialGeometry, Tools, &minus, &mult, &plus, &tensor, &wedge, DGzip, Hook
Download Help Document