Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Tensor[SymmetrizeIndices] - symmetrize or skew-symmetrize a list of tensor indices
Calling Sequences
SymmetrizeIndices(T, Indices, keyword)
Parameters
T - a tensor
Indices - a list of integers, referring to the arguments of T
keyword - a keyword string, either "Symmetric" or "SkewSymmetric"
Description
We illustrate the conventions for this program by describing some simple special cases. If T is a rank 3 covariant tensor, then the result of symmetrizing T over its first 2 arguments is the tensor U(X, Y, Z ) = 1/2*(T(X, Y, Z) + T(Y, X, Z)). The result of skew-symmetrizing T over its 1st and 3rd arguments is the tensor V(X, Y, Z) = 1/2*(T(X, Y, Z) - T(Z, Y, X)). The symmetrization of T over all its indices is the tensor W(X, Y, Z ) = 1/6*(T(X, Y, Z) + T(Y, X, Z) + T(Z, Y, Z) + ...), where the sum contains 6 terms involving all possible permutations of the arguments X, Y, Z.
SymmetrizeIndices(T, Indices, keyword) will symmetrize or skew-symmetrize the tensor T over the arguments given by the Indices list. Note that all the elements of the Indices list must refer to indices of the same tensor index type.
SymmetrizeIndices acts as a projection operator -- two applications of SymmetrizeIndices to the same tensor gives the same result as a single application.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form SymmetrizeIndices(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-SymmetrizeIndices.
Examples
Example 1.
First create a 4 dimensional manifold M and define a rank 5 tensor T on M.
Symmetrize T1 over its 1st and 2nd arguments.
Skew-symmetrize T1 over its 1st, 2nd and 4th arguments.
Note that SymmetrizeIndices acts as a projection operator.
See Also
DifferentialGeometry, Tensor, RearrangeIndices
Download Help Document