Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LieAlgebras[QuotientAlgebra] - create the Lie algebra data structure for a quotient algebra of a Lie algebra by an ideal
Calling Sequences
QuotientAlgebra(h, m, Algname, keyword)
Parameters
h - a list of independent vectors defining an ideal h in a Lie algebra g
m - a list of independent vectors defining a vector space complement to h in g
Algname - a name or a string, the name assigned to the quotient algebra g/h
keyword - (optional) the keyword "Matrix"
Description
Let g be a Lie algebra and h an ideal in g. Then elements of the quotient algebra g/h are the h cosets x + h, where x in g. The Lie bracket on g/h is defined by [x + h, y + h] = [x, y] + h. If vectors y_1, y_2, .. y_r form a basis for a complement to h, then the cosets y_1 + h, y_2 + h, ..., y_r + h form a basis for g/h.
The program QuotientAlgebra(h, m) creates a Lie algebra data structure for the quotient algebra g/h using the vectors in the complement m as the representative basis elements for g/h.
A Lie algebra data structure contains the structure constants in a standard format used by the LieAlgebras package. In the LieAlgebras package, the command DGsetup is used to initialize a Lie algebra -- that is, to define the basis elements for the Lie algebra and its dual and to store the structure constants for the Lie algebra in memory.
With the optional keyword present, QuotientAlgebra(h, m, "Matrix") returns the Lie algebra data structure for g/h and the Matrix representation of the canonical projection map g -> g/h defined by x -> x + h.
The command QuotientAlgebra is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form QuotientAlgebra(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-QuotientAlgebra(...).
Examples
Example 1.
First initialize a Lie algebra and display the multiplication table.
Check that S1 = [e1, e3] is an ideal and find the quotient algebra (call it Alg2) using the complement vectors [e2, e4, e5].
Rerun QuotientAlgebra with the keyword argument "Matrix".
We use the DifferentialGeometry command transform to convert the matrix A into a transformation from Alg1 to the quotient algebra Alg2.
We can check that PI is a Lie algebra homomorphism.
We see that PI sends e1 to 0, f2 to f1 and so on.
We can verify that [e1, e3] is the kernel of PI and that the image of PI is [f1, f2, f3] (so that PI is surjective).
See Also
DifferentialGeometry, LieAlgebras, HomomorphismSubalgebras, LieAlgebraData, Query[Homomorphism], Query[Ideal]
Download Help Document