Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Query[Jacobi] - check if a list of structure equations defines a Lie algebra by verifying the Jacobi identities
Calling Sequences
Query(Alg, "Jacobi")
Query(Alg, parm, "Jacobi")
Parameters
Alg - (optional) the name of an initialized Lie algebra
parm - (optional) a set of parameters appearing in the structure equations of the Lie algebra g
Description
A bracket operation [ , ] on a vector space g defines a Lie bracket if it is bi-linear, skewsymmetric, and satisfies [[x, y], z] + [[z, x], y] + [[y, z], x] = 0.
In terms of the standard exterior derivative operator d defined on the exterior algebra of the dual space g* (defined on 1-forms by d(x, y) = - [x, y]), the Jacobi identities are equivalent to d^2 = 0.
The program DGsetup does not check that its input, a Lie algebra data structure, actually defines a Lie algebra. To verify that a Lie algebra data structure does indeed define a Lie algebra, initialize the Lie algebra data structure, and run Query("Jacobi").
Query(Alg, "Jacobi") returns true if the Jacobi identities hold (in which case Alg defines a Lie algebra) and false otherwise. If the algebra is unspecified, then LieAlgebraCheck is applied to the current algebra.
Query(Alg, parm, "Jacobi") returns a sequence TF, Eq, Soln, AlgList. Here TF is true if Maple finds parameter values for which the Jacobi identities are valid and false otherwise; Eq is the set of equations (with the variables parm as unknowns) which must be satisfied for the Jacobi identities to hold; Soln is the list of solutions to the equations Eq; and AlgList is the list of Lie algebra data structures obtained from the parameter values given by various solutions in Soln.
The command Query is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form Query(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Query(...).
Examples
Example 1.
We begin by defining a bracket operation on a 3 dimensional vector space with basis [x1, x2, x3]. This bracket depends upon two parameters a1 and a2.
We shall determine for which parameter values this bracket satisfies the Jacobi identities.
Convert to a Lie algebra data structure.
Initialize this data structure.
The equations that must be satisfied for the bracket to satisfy Jacobi are:
This leads to two cases a1 = 0 or a2 = 0. We initialize the resulting Lie algebra data structures and print the multiplication tables.
Example 2
The Jacobi identities are equivalent to the vanishing of the square of the exterior derivative. For example:
See Also
DifferentialGeometry, LieAlgebras, ExteriorDerivative, LieBracket, Query
Download Help Document