Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Query[CartanSubalgebra] - check if a list of vectors defines a Cartan subalgebra
Calling Sequences
Query()
Parameters
A - a list of vectors, defining a subspace of a Lie algebra
options - one or more of the keyword arguments rank = n (where is a positive integer), algebratype = "Semisimple" or algebratype = "Simple"
Description
Let be a Lie algebra. A Cartan subalgebra h is a nilpotent subalgebra whose normalizer in g is itself, that is, .
If the Lie algebra is semi-simple and the rank of the Lie algebra is then any Cartan subalgebra is of dimension and is Abelian. This simplifies checking if a given subspace of vectors is a Cartan subalgebra ( the nilpotency of h need not be verified).
Examples
Example 1.
We test if certain subalgebras of are Cartan subalgebras. First define the standard matrix representation for as the space of trace-free matrices.
Calculate the structure equations for these matrices and initialize the resulting Lie algebra.
Let's check that is semi-simple.
Test to see if a list of vectors defines a Cartan subalgebra.
Since has 2 elements, this implies that the rank of is 2. We can use this information to simplify checking that other subalgebras are Cartan subalgebras
Here is a 2-dimensional Abelian subalgebra which is not self-normalizing and therefore not a Cartan subalgebra.
Example 2.
The notion of a Cartan subalgebra is not restricted to semi-simple Lie algebras. We define a solvable Lie algebra and test to see if some subalgebras are Cartan subalgebras.
Any subalgebra which is an ideal cannot be a Cartan subalgebra.
See Also
DifferentialGeometry, CartanSubalgebra, LieAlgebraData, Query[Ideal], Query[Solvable], Query[Subalgebra], Query[Semisimple]
Download Help Document