Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Query[Abelian] - check if a Lie algebra is Abelian
Calling Sequences
Query(Alg, "Abelian")
Query(S, "Abelian")
Parameters
Alg - (optional) name or string, the name of an initialized Lie algebra
S - a list of vectors defining a basis for a subalgebra
Description
A Lie algebra g is Abelian if [x, y] = 0 for all x, y in g.
Query(Alg, "Abelian") returns true if Alg is an Abelian Lie algebra and false otherwise. If the algebra is unspecified, then Query is applied to the current algebra.
Query(S, "Abelian") returns true if the subalgebra S is an Abelian Lie algebra and false otherwise.
The command Query is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form Query(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Query(...).
Examples
Example 1.
We initialize a pair of 3 dimensional Lie algebras.
The first algebra is not Abelian and the second is, as confirmed by a call to Query.
The subalgebra S1 = [x1, x2] in Alg1 is not Abelian while the subalgebra S2 = [x2, x3] is Abelian.
See Also
DifferentialGeometry, LieAlgebras, ChangeLieAlgebraTo, Query
Download Help Document