Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LieAlgebras[DirectSumOfRepresentations] - form the direct sum representation for a pair of representations of a Lie algebra
Calling Sequences
DirectSum(R, W)
Parameters
R - a list R = [rho1, rho2, ...] of representations rho1, rho2, ... of a Lie algebra g on vector spaces V1, V2, ...
W - a Maple name or string, the name of the frame for the representation space for the direct sum representation
Description
Let W = V1 + V2 + ... (direct sum). The command DirectSum(R, W) returns the representation phi on W defined by phi(x)(y) = rho1(x)(y1) + rho2(x)(y2) + ..., where y = y1 + y2 + ..., y1 in V1, y2 in V2, ... and x in g.
Examples
Example 1.
Define the standard representation and the adjoint representation for sl2. Then form the direct sum representation. First, setup the representation spaces.
Define the standard representation.
Define the adjoint representation.
Define the direct sum representation of rho1 and rho2.
Define the direct sum of 3 copies of rho1.
See Also
DifferentialGeometry, LieAlgebras, Representation
Download Help Document