Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LieAlgebras[CompactRoots] - find the compact roots in a root system for a non-compact semi-simple real Lie algebra
Calling Sequences
CompactRoots()
Parameters
Delta - a list of column vectors, defining the root system, positive roots or simple roots of a non-compact semi-simple Lie algebra
A - a list of vectors in a Lie algebra, defining a subalgebra of the Cartan subalgebra on which the Killing form is negative-definite
CSA - a list of vectors, defining the Cartan subalgebra of a non-compact semi-simple Lie algebra
Description
Let g be a semi-simple real Lie algebra. Then g is called compact if the Killing form of g is negative-definite, otherwise g is called non-compact.
Every non-compact semi-simple real Lie algebra g admits a Cartan decomposition g = t 4p . Here t is a subalgebra, p a subspace, [t, p] 4 p and [p, p] 4 t, that is, t and p define a symmetric pair. Moreover, the Killing form is negative-definite on t and positive-definite on p.
Let h be a Cartan subalgebra for g and let be the associated root system. Set a = h X p. Then the set of compact roots is defined to be
This means that if we choose a basis for a and extend to a basis for h, then the components of a compact root in the directions are 0. If determines the root space for then for With respect to the standard Cartan algebras for the non-compact, simple matrix algebras we consider here, the compact roots are precisely those which are purely imaginary complex numbers.
In the Satake diagram for a non-compact semi-simple real Lie algebra, the compact roots are given a different color from the other roots.
Examples
Example 1.
We find the compact roots for First we use the command SimpleLieAlgebraData to initialize the Lie algebra
For this example we use the command SimpleLieAlgebraProperties to generate the various properties of that we need.
Here is the Cartan subalgebra.
Here is the Cartan subalgebra decomposition
We check that the restriction of the Killing form to the diagonal matrices with imaginary entries is negative-definite. The restriction of the Killing form to the diagonal matrices with real entries is positive-definite.
The second list of vectors in (2.3) is therefore our subalgebra as described above.
Next we find the positive roots.
The compact roots are:
Note that these roots all have purely imaginary components.
Example 2.
We use the command SimpleLieAlgebraProperties to generate the various properties of that we need.
The restriction of the Killing form to the diagonal matrices with imaginary entries is negative-definite. The restriction of the Killing form to the diagonal matrices with real entries is positive-definite.
See Also
DifferentialGeometry, CartanDecomposition, Cartan Involution, CartanSubalgebra, DynkinDiagram, PositiveRoots, RootSpaceDecomposition, RestrictedRootSpaceDecomposition, SatakeDiagram, SimpleLieAlgebraProperties, SimpleRoots
Download Help Document