Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LieAlgebras[CartanMatrixToStandardForm] - transform a Cartan matrix to standard form
Calling Sequences
CartanMatrixToStandardForm(,)
Parameters
C - a square matrix
SR - (optional) a list of vectors, the simple roots used to determine the Cartan matrix for a simple Lie algebra
Description
Let be a set of simple roots for g. Then the associated Cartan matrix is the matrix with entries
.
(See CartanMatrix for the definition of the vectors )
A permutation of the roots leads to a different but equivalent Cartan matrix.
The command CartanMatrixToStandardForm transforms a Cartan matrix to the standard form for each root type.
The command returns the Cartan matrix in standard form, a permutation matrix, and a string denoting the root type. The permutation matrix will transform the given Cartan matrix to its standard form by a similarity transformation.
If the second calling is invoked, then the second element of the output is the permuted set of simple roots which will generate the standard form of the Cartan matrix.
Examples
Example 1.
We define 4 different Cartan matrices and calculate their standard forms and root type.
Here are the standard forms, permutation matrices and root types.
For each example the second output is a permutation matrix which transforms the given input Cartan matrix to its standard form.
Example 2.
We define a 21-dimensional simple Lie algebra and calculate its root type.
Initialize this Lie algebra.
Find a Cartan subalgebra.
Find the root space decomposition.
Find the roots, positive roots and a choice of simple roots.
Find the Cartan matrix.
Transform the Cartan matrix to standard form. Here we use the second calling sequence. The command CartanMatrixToStandardForm now returns a permuted set of simple roots for which the Cartan matrix will be in standard form.
Check the result by re-calculating the Cartan matrix with respect to the permuted set of roots. We get the standard form immediately.
The root type of our 21-dimensional Lie algebra is
See Also
DifferentialGeometry, CartanMatrix, CartanSubalgebra, PositiveRoots, RootSpaceDecomposition, SimpleRoots
Download Help Document