Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DEtools[solve_group] - represent a Lie Algebra of symmetry generators in terms of derived algebras
Calling Sequence
solve_group(G, y(x))
Parameters
G
-
list of symmetry generators
y(x)
dependent and independent variables
Description
solve_group receives a list G of infinitesimals corresponding to symmetry generators that generate a finite dimensional Lie Algebra G, and returns a representation of the derived algebras of G.
Derived algebras of G are defined recursively as follows:
is G;
is the Lie Algebra obtained by taking all possible commutators of ;
in general, is the Lie Algebra obtained by taking all possible commutators of .
Since G is assumed to be finite, there exists a positive integer with the following properties:
(i) =
(ii) is the smallest integer possessing property (i).
solve_group returns a list of lists of symmetries with the following properties:
The symmetries inside the list form the basis for
The symmetries inside the lists and together form the basis for .
In general, the symmetries inside the first lists of together form the basis for .
In other words, map(op, L[1..n+1-i]) is a basis for .
The group G is solvable if is the zero group. If G is solvable then the first element of the returned list will be the empty list [].
This function is part of the DEtools package, and so it can be used in the form solve_group(..) only after executing the command with(DEtools). However, it can always be accessed through the long form of the command by using DEtools[solve_group](..).
Examples
See Also
canoni, DEtools, DEtools/reduce_order, dsolve,Lie, equinv, eta_k, PDEtools, symgen, Xcommutator
Download Help Document