Researchers at the University of Waterloo use MapleSim in New Approach to Tire Modeling - User Case Studies - Maplesoft

Fallstudie:
Forscher der University of Waterloo setzen MapleSim für einen neuen Ansatz bei der Modellierung von Reifen ein

Herausforderung
Idealerweise simuliert ein Reifenmodell exakt und in kurzer Zeit die Dynamik des Systems. Leider bilden heutige Reifenmodellen das Verhalten entweder nicht mit einer hohen Genauigkeit ab oder sie sind so rechenintensiv, dass die Simulation sehr langsam ist. Forscher an der University of Waterloo wollten herausfinden, ob sie ein neues Reifenmodell entwickeln konnten, dass eine bessere Balance zwischen Genauigkeit und Effizienz bietet.

Lösung
Mit MapleSim entwickelten die Forscher ein volumetrisches Reifenmodell, um genauere Ergebnisse mit einer höheren Effizienz als andere Modelle erhalten zu können.

Ergebnis
Die ersten Testergebnisse sind vielversprechend. Das neue Reifenmodell liefert genauere Ergebnisse als bestehende Modelle, ohne auf rechenintensivere Verfahren zurückgreifen zu müssen. Die Forscher planen, die Parameter des MapleSim-Modells mit zusätzlichen Daten aus einem Fahrzeugmesssystem besser abzustimmen. Das Modell kann in ein detailliertes Fahrzeugmodell integriert werden, um ganze Fahrzeugsystem zu simulieren.


Reifen sind bei der Entwicklung von Fahrzeugen eine kritische Komponente. Um Zeit und Geld zu sparen, setzen die Hersteller bei der Entwicklung neuer Fahrzeuge typischerweise Modelle ein, um die Dynamik zwischen Reifen und Fahrbahnoberfläche zu simulieren. Idealerweise simuliert das Reifenmodell exakt die Dynamik des Systems und erlaubt es den Entwicklern so, die Parameter zu variieren. Außerdem müssen diese Simulationen schnell ausgeführt werden können.

Bestehende Reifenmodelle haben systembedingte Nachteile. Einige Reifenmodelle, wie z.B. die „Magic Formula“ von Pacejka, basieren ausschließlich auf empirischen Daten. Bei anderen Modellen, beispielsweise denen nach der Finite-Elemente-Methode, ist der Ressourcenaufwand sehr hoch, oder der Reifen wird durch andere physikalische Objekte, z.B. eine Schnur oder eine Bürste, dargestellt. Keines dieser Modelle erreicht eine optimale Balance zwischen Genauigkeit und Effizienz. Forscher an der University of Waterloo haben nun einen neuen Ansatz bei der Modellierung von Reifen entwickelt, mit dem Ziel diese optimale Balance zu erreichen.

Das Forscherteam um Dr. John McPhee, Professor für Systems Design Engineering, und  Dr. Joydeep Banerjee, Forschungsleiter, haben MapleSim – das Werkzeug von Maplesoft zur Modellierung auf Systemebene – eingesetzt, um ein volumetrisches Reifenmodell zu entwickeln und zu testen. „Das in MapleSim entwickelte volumetrische Reifenmodell hat zwei klare Vorteile gegenüber den bestehenden Modellen“, erklärte Dr. Banerjee. „Da die Momente nur aus den kinematischen Daten berechnet werden, lässt sich die numerische Simulation des Modells einfach programmieren. Zusätzlich werden die Widerstandsmomente als Funktion der Normallast und der Winkelgeschwindigkeit des Rads berechnet.“

Mit Hilfe von Maple, der fortschrittlichen Rechenengine von Maplesoft, sind die symbolischen Ausdrücke für die Normalkraft und den Rollwiderstand als Funktion der Position und Orientierung des Reifens hergeleitet worden. Die verteilten Reibungskräfte wurden symbolisch über die Kontaktfläche des Reifens integriert, um die Zugkräfte und Selbstausrichtungsmomente zu berechnen. Die Forscher setzten dann die mit Maple entwickelten Gleichungen als benutzerdefinierte Komponente in MapleSim ein, um das Modell zu entwickeln.



Figure 1 - Volumetrisches Reifenmodell wie in MapleSim entwickelt


Um die Genauigkeit des volumetrischen Reifenmodells zu testen, wurde es in einem simulierten Fallversuch eingesetzt. Beim realen Fallversuch wurde ein mit 2,3 bar aufgepumpter MICHELIN® 195/65 R15 Sommerreifen verwendet. Das Reifenmodell wurde so aufgebaut, dass es die gleichen Bewegungen wie beim realen Fallversuch durchlief. Mit MapleSim wurden dann Fall und Rückprall simuliert. Auch andere kommerziell verfügbare Reifenmodelle aus der umfangreichen MapleSim-Reifenbibliothek kamen zum Einsatz, und die Ergebnisse wurden verglichen. Beim Vergleich der beiden Modelle lieferte das volumetrische MapleSim-Reifenmodell eine etwas genauere Schätzung für die Position des Rads.



Figure 2 - Vergleich der simulierten und gemessenen Kräfte im volumetrischen Reifenmodell



Die ersten Ergebnisse des volumetrischen MapleSim-Reifenmodels sind vielversprechend, und dies nicht nur bei Automobilreifen, sondern auch bei Reifen mit höherem Sturz, wie Fahrrad- und Motorradreifen. Um die Genauigkeit des Systems weiter zu erhöhen, planen die Forscher, das volumetrische Reifenmodell mit Daten aus einem Fahrzeugmesssystem (VMS) weiter zu untersuchen. Das VMS liefert Informationen zur Position und Orientierung der Reifen sowie den Lasten, die während einer realen Testfahrt auf den Reifen eingewirkt haben.


Figure 3 - Fahrzeug mit VMS ausgestattet



„Auch wenn die ersten Ergebnisse des Modells vielversprechend aussehen, können die Daten eines VMS dazu herangezogen werden, die Parameter des Modells besser abzustimmen“, sagte Dr. McPhee. „Mit MapleSim können wir die Analyse noch einen Schritt weiter führen, in dem wir das Reifenmodell einfach in ein detailliertes Fahrzeugmodell integrieren und das Fahrzeugsystem als Ganzes simulieren.“

*Zum Zeitpunkt dieses Forschungsprojekts war Dr. Joydeep Banerjee Mitglied des Forschungsteams von Dr. McPhee an der University of Waterloo. Er arbeitet heute als Anwendungsingenieur bei Maplesoft.

Contact Maplesoft to learn how MapleSim can help with your projects