Chebyshev - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


convert/Chebyshev

convert special functions admitting 2F1 hypergeometric representation into Chebyshev functions

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

convert(expr, Chebyshev)

Parameters

expr

-

Maple expression, equation, or a set or list of them

Description

• 

convert/Chebyshev converts, when possible, special functions admitting a 2F1 hypergeometric representation into Chebyshev functions (see ?ChebyshevT and ?ChebyshevU). The Chebyshev functions are

FunctionAdvisor( Chebyshev );

The 2 functions in the "Chebyshev" class are:

ChebyshevT,ChebyshevU

(1)

Examples

a+1hypergeoma,a+2,32,1212z

a+1hypergeoma,a+2,32,12z2

(2)

convert,Chebyshev

ChebyshevUa,z

(3)

JacobiPa+b,12,12,12z+JacobiPab,12,12,12z

JacobiPa+b,12,12,z2+JacobiPab,12,12,z2

(4)

convert,Chebyshev

a+b1212ChebyshevTab,z2+ab+1212ChebyshevUab,z2ab+1

(5)

1π12sinπaaMeijerG1a,a+1,,0,12,12+12z

sinπaaMeijerG1a,a+1,,0,12,12+z2π

(6)

simplifyconvert,Chebyshev

ChebyshevTa,z

(7)

When converting to a function class (e.g. Chebyshev) it is possible to request additional conversion rules to be performed. Compare for instance these two different outputs:

GegenbauerCa,1,z

GegenbauerCa,1,z

(8)

convert,Chebyshev

ChebyshevUa,z

(9)

convert,Chebyshev,raise a

ChebyshevU4a,z2zChebyshevU3a,z

(10)

See Also

convert

convert/to_special_function

FunctionAdvisor