Powmod - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Powmod

inert power function with remainder

 Calling Sequence Powmod(a, n, b, x) Powmod(a, n, b)

Parameters

 a - polynomial in x n - integer b - polynomial in x x - name

Description

 • The Powmod function is a placeholder for representing $\mathrm{Rem}\left({a}^{n},b\right)$ or $\mathrm{Rem}\left({a}^{n},b,x\right)$.  Powmod is more efficient than computing Power(a, n) separately.  It is used in conjunction with either mod or modp1.
 • The call Powmod(a, n, b, x) mod p computes $\mathrm{Rem}\left({a}^{n},b,x\right)\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}\mathbf{mod}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}p$. The polynomials a and b must have rational coefficients or coefficients over a finite field specified by RootOfs.
 • The call modp1(Powmod(a, n, b), p) computes $\mathrm{Rem}\left({a}^{n},b\right)\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}\mathbf{mod}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}p$. The polynomials a and b must be in the modp1 representation and p must be a positive integer.

Examples

 > $\mathrm{Powmod}\left(x,16,{x}^{4}+x+1,x\right)\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}\mathbf{mod}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}2$
 ${x}$ (1)
 > $\mathrm{Powmod}\left(x,-5,{x}^{4}+x+1,x\right)\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}\mathbf{mod}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}2$
 ${{x}}^{{2}}{+}{x}{+}{1}$ (2)