DifferentialGeometry/Tensor/SolderForm - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

Home : Support : Online Help : DifferentialGeometry/Tensor/SolderForm

Tensor[SolderForm] - calculate the solder form from an orthonormal frame

Calling Sequences

     SolderForm(OrthFr, indexlist)

Parameters

   OrthFr    - a list of 4 vectors defining an orthonormal frame for a metric g with signature

   indexlist - (optional) the keyword argument indextype = ind, where ind is a list of 3 index types "con" or "cov"

 

Description

Examples

See Also

Description

• 

The solder form  is a rank 3 spin-tensor which defines an isomorphism between vectors and Hermitian rank 2 spinors. The first index type is a covariant tensor index, the second index type is a contravariant spinor index, and the third index is a contravariant barred (primed) spinor index. Denote the components of the solder form by  (The components of the solder form are often referred to as the Infeld-van der Waerden symbols.) To define the solder form, first recall the definition of an orthonormal frame. Let  be a 4-dimensional manifold and let  be a metric on  with signature . A tetrad of vectors  is an orthonormal frame with respect to the metric if  for , , ) = -1, . The command DGGramSchmidt can be used to create an orthonormal frame. The command GRQuery or TensorInnerProduct can used to check that a list of vectors constitutes an orthonormal frame for a given metric. Recall also the definition of the 4 Pauli spin matrices , given below in Example 1. The matrix elements of the  can be viewed as components of a Hermitian spinor,  Let  be an orthonormal frame with respect to a metric and let  be the dual co-frame (see DualBasis). Then the associated solder form is

    (sum on ).

• 

The command SolderForm(OrthFr) calculates the solder form from the orthonormal frame OrthFr.

• 

The keyword argument indexlist = ind allows the user to specify the index structure for the solder form. For example, withindexlist = ["con", "con", "con"], the contravariant form  is returned.

• 

The solder form satisfies a number of important identities.  These are given in Example 2.

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form SolderForm(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order.  It can always be used in the long form DifferentialGeometry:-Tensor:-SolderForm.

Examples

 

Example 1.

First create a vector bundle over  with base coordinates  and fiber coordinates . It is understood that  are complex conjugates of .

(2.1)

 

Define a spacetime metric  on  with signature .

M > 

(2.2)

 

Define an orthonormal frame on  with respect to the metric .  Verify the frame is orthonormal using the command GRQuery.

M > 

(2.3)
M > 

(2.4)

 

Calculate the solder form  from the frame .

M > 

(2.5)

 

Let us obtain this result directly from the definition. First we define the Pauli matrices.

M > 

 

Define the corresponding rank 2 Hermitian spinors.

M > 

(2.6)
M > 

(2.7)
M > 

(2.8)
M > 

(2.9)

 

Define the dual coframe to .

M > 

(2.10)
M > 

(2.11)

 

This coincides with .

M > 

(2.12)

 

Example 2.

The solder form satisfies two important identities. The first identity involves contracting a pair of solder forms over their spinor indices:

 

The second identity involves contracting a pair of solder forms over their tensor indices:

 

 

Let us check the first identity using the solder form from Example 1.  First calculate the covariant form of the solder form, using the orthonormal frame of the previous example.

M > 

(2.13)

 

Note that this coincides with the result of using RaiseLowerSpinorIndices to lower the spinor indices of  using the epsilon spinor.

M > 

(2.14)

 

The contraction of  and sigmaCov over their spinor indices gives the metric .

M > 

(2.15)

 

The same result can be obtained using SpinorInnerProduct.

M > 

(2.16)

 

To check the second identity calculate the contravariant form of .

M > 

(2.17)

 

Note that this coincides with the result of using RaiseLowerIndices to raise the tensor index of  using the inverse of the metric .

M > 

(2.18)

 

The contraction of  and sigmaCon over their tensor indices gives a product of epsilon spinors (EpsilonSpinor).

M > 

(2.19)

 

Rearrange the indices so that the spinor indices are first, the barred spinor indices second.

M > 

(2.20)
M > 

(2.21)

 

Example 3.

Here we compute a solder form for the Gödel spacetime.  (See (12.26) in Stephani Kramer et al.) First create a vector bundle over  with base coordinates  and fiber coordinates .

M > 

(2.22)

 

Define the Gödel metric  on . (Note that we have adjusted the metric to conform to the signature convention used by the spinor formalism in DifferentialGeometry .)

M > 

(2.23)

 

Use DGGramSchmidt to calculate an orthonormal frame  for the metric .

M > 

(2.24)

 

Use SolderForm to compute the solder form  from the orthonormal frame .

M > 

(2.25)

 

Example 4.

For any metric of Lorentz signature , a compatible solder form can be constructed.

M > 

(2.26)

 

Define a spacetime metric .

N > 

(2.27)

 

Use the command DGGramSchmidt to find an orthonormal frame.

N > 

(2.28)

 

Calculate the solder form from .

N > 

(2.29)

 

Use SpinorInnerProduct to check that is compatible with the metric .

N > 

(2.30)

See Also

DifferentialGeometry, Tensor, BivectorSolderForm, convert/DGspinor, convert/DGtensor, DGGramSchmidt, DualBasis, EpsilonSpinor, GRQuery, NullTetrad, OrthonormalTetrad, RaiseLowerIndices, RaiseLowerSpinorIndices, RicciSpinor,  SpinConnection, SpinorInnerProduct, WeylSpinor


Download Help Document