Tensor[AdaptedNullTetrad] - find a null tetrad which transforms the Newman-Penrose Weyl scalars to a standard form
Calling Sequences
AdaptedNullTetrad(NT, PT, options )
AdaptedNullTetrad(NT, PT, W, options )
AdaptedNullTetrad(NT, PT, NP , options )
Parameters
NT - a null tetrad for the spacetime metric g
PT - the Petrov type of g
W - (optional) the Weyl tensor of g
NP - (optional) the Newman-Penrose Weyl scalars
options - one or more of the keyword arguments method and output
Description
Examples
The Newman-Penrose Weyl scalars are a set of 5 complex scalars, labeled Ψ0, Ψ1, Ψ2, Ψ3, Ψ4 , and defined by certain components of the Weyl tensor with respect to a given null tetrad in a four dimensional spacetime of signature [1, -1, -1, -1]. Under local Lorentz transformations, the Newman-Penrose Weyl scalars transform among themselves in a natural way. Depending upon the Petrov type of the spacetime it is possible to transform the Newman-Penrose Weyl scalars to one of following normal forms. Below, η and χ are complex scalars. See NPCurvatureScalars, NullTetradTransformation.
Type I. Ψ0= 32 η χ , Ψ1 = 0, Ψ2=12η2 − χ, Ψ3 =0, Ψ4 = 32η χ .
Type II. Ψ0= 0, Ψ1= 0, Ψ2 =η, Ψ3=0,Ψ4 = 6 η.
Type III. Ψ0 = 0, Ψ1=0, Ψ2 =0, Ψ3=1, Ψ4 = 0.
Type D. Ψ0= 0, Ψ1 = 0, Ψ2 =η, Ψ3 = 0, Ψ4= 0.
Type N. Ψ0= 0, Ψ1 =0, Ψ2 = 0, Ψ3 = 0, Ψ4 = 1.
Type O. Ψ0= 0, Ψ1 = 0, Ψ2 =0, Ψ3 =0, Ψ4 = 0.
See Penrose and Rindle Vol. 2, Section 8.3.
Null tetrads for which the Newman-Penrose Weyl scalars are in the above normal form are called adapted null tetrads. Calculations are often simplified by using an adapted null tetrad.
The command AdaptedNullTetrad returns a null tetrad which will put the Newman-Penrose Weyl scalars in the above normal form.
The procedure AdaptedNullTetrad first calculates the Weyl spinor and calls the procedure AdaptedSpinorDyad to find a spinor dyad which transforms the Weyl spinor to normal form. The adapted null tetrad is then constructed from the spinor dyad.
The command AdaptedNullTetrad is part of the DifferentialGeometry:-Tensor package. It can be used in the form AdaptedNullTetrad(...) only after executing the commands with(DifferentialGeometry) and with(Tensor), but can always be used by executing DifferentialGeometry:-Tensor:-AdaptedNullTetrad(...).
with⁡DifferentialGeometry:with⁡Tensor:
Set the global environment variable _EnvExplicit to true to insure that the adapted null tetrads are free of RootOf expressions.
_EnvExplicit ≔ true:
Example 1. Type I
We calculate an adapted null tetrad for a type I spacetime. First define the coordinates to be used and then define the metric.
DGsetup⁡t,x,y,z,M
frame name: M
g1 ≔ evalDG⁡dt &t dt−t2⁢dx &t dx−x2⁢dy &t dy−dz &t dz
g1:=_DG⁡tensor,M,cov_bas,cov_bas,,1,1,1,2,2,−t2,3,3,−x2,4,4,−1,_DG⁡tensor,M,cov_bas,cov_bas,,1,1,1,2,2,−t2,3,3,−x2,4,4,−1
Here is an initial null tetrad.
NT1 ≔ evalDG⁡D_t+D_z,1⁢D_t−D_z2,1⁢2⁢D_x2⁢t+1⁢I⁢2⁢D_y2⁢x,1⁢2⁢D_x2⁢t−1⁢I⁢2⁢D_y2⁢x
NT1:=_DG⁡vector,M,,1,1,4,1,_DG⁡vector,M,,1,1,4,1,_DG⁡vector,M,,1,12,4,−12,_DG⁡vector,M,,1,12,4,−12,_DG⁡vector,M,,2,22⁢t,3,I2⁢2x,_DG⁡vector,M,,2,22⁢t,3,I2⁢2x,_DG⁡vector,M,,2,22⁢t,3,−I2⁢2x,_DG⁡vector,M,,2,22⁢t,3,−I2⁢2x
We check that this is indeed a null tetrad for the given metric using GRQuery.
GRQuery⁡NT1,g1,NullTetrad
true
Compute the Newman-Penrose coefficients and check that the Petrov type is I. The coefficients are not in normal form for type I (for example, Ψ1 ≠ 0), so NT1 is not an adapted null tetrad.
NP1 ≔ NPCurvatureScalars⁡NT1,output=WeylScalars
NP1:=tablePsi1=−14⁢2x⁢t2,Psi0=0,Psi2=0,Psi4=0,Psi3=−18⁢2x⁢t2
PetrovType⁡NP1
I
Calculate an adapted null tetrad and simplify.
newNT1 ≔ combine⁡AdaptedNullTetrad⁡NT1,I,symbolic
newNT1:=_DG⁡vector,M,,1,22,2,−22⁢t,_DG⁡vector,M,,1,22,2,−22⁢t,_DG⁡vector,M,,1,22,2,22⁢t,_DG⁡vector,M,,1,22,2,22⁢t,_DG⁡vector,M,,3,12+I2x,4,12−I2,_DG⁡vector,M,,3,12+I2x,4,12−I2,_DG⁡vector,M,,3,12−I2x,4,12+I2,_DG⁡vector,M,,3,12−I2x,4,12+I2
Calculate the Newman-Penrose coefficients for the new null tetrad. We obtain the correct normal form (with χ = 2)since Ψ1= Ψ3 = 0 and Ψ0= Ψ4.
newNP1 ≔ NPCurvatureScalars⁡newNT1,output=WeylScalars
newNP1:=tablePsi1=0,Psi0=−12⁢It2⁢x,Psi2=0,Psi4=−12⁢It2⁢x,Psi3=0
Example 2. Type II
We calculate an adapted null tetrad for a type II spacetime. First define the coordinates to be used and then define the metric.
DGsetup⁡r,u,x,y,M
g2 ≔ evalDG⁡−2⁢r2⁢dx &t dx+dy &t dy2⁢x3+2⁢du &s dr−3⋅2⁢x+2⁢mr⁢du &t du
g2:=_DG⁡tensor,M,cov_bas,cov_bas,,1,2,1,2,1,1,2,2,−2⁢3⁢x⁢r+mr,3,3,−r24⁢x3,4,4,−r24⁢x3,_DG⁡tensor,M,cov_bas,cov_bas,,1,2,1,2,1,1,2,2,−2⁢3⁢x⁢r+mr,3,3,−r24⁢x3,4,4,−r24⁢x3
NT2 ≔ evalDG⁡D_r,3⁢x⁢r+m⁢D_rr+D_u,I⁢2⁢x32⁢D_xr+2⁢x32⁢D_yr,−I⁢2⁢x32⁢D_xr+2⁢x32⁢D_yr
NT2:=_DG⁡vector,M,,1,1,_DG⁡vector,M,,1,1,_DG⁡vector,M,,1,3⁢x⁢r+mr,2,1,_DG⁡vector,M,,1,3⁢x⁢r+mr,2,1,_DG⁡vector,M,,3,I⁢2⁢x32r,4,2⁢x32r,_DG⁡vector,M,,3,I⁢2⁢x32r,4,2⁢x32r,_DG⁡vector,M,,3,−I⁢2⁢x32r,4,2⁢x32r,_DG⁡vector,M,,3,−I⁢2⁢x32r,4,2⁢x32r
We check that this is indeed a null tetrad for the given metric.
GRQuery⁡NT2,g2,NullTetrad
Compute the Newman-Penrose coefficients and check that the Petrov type is II. The coefficients are not in normal form for type II (for example, Ψ3 ≠ 0), so NT2 is not an adapted null tetrad.
NP2 ≔ NPCurvatureScalars⁡NT2,output=WeylScalars
NP2:=tablePsi1=0,Psi0=0,Psi2=−mr3,Psi4=18⁢x2r2,Psi3=−3⁢I⁢2⁢x3/2r2
PetrovType⁡NP2
II
Calculate an adapted null tetrad. We use the third calling sequence so that the Weyl tensor, or equivalently, the Newman-Penrose Weyl scalars need not be computed. Moreover, all computations are then algebraic and we can use Maple's assuming feature to simplify all intermediate calculations.
newNT2 ≔ AdaptedNullTetrad⁡NT2,II,NP2assuming0<x,0<y,0<r,3⁢m−2⁢x⁢r<0,m<0
newNT2:=_DG⁡vector,M,,1,−r⁢2⁢x⁢r−3⁢m⁢xm,_DG⁡vector,M,,1,−r⁢2⁢x⁢r−3⁢m⁢xm,_DG⁡vector,M,,1,−2⁢r3⁢x3+3⁢m2⁢r⁢x+m3r32⁢2⁢x⁢r−3⁢m⁢x⁢m,2,−mr⁢2⁢x⁢r−3⁢m⁢x,3,−4⁢x2r⁢2⁢x⁢r−3⁢m,_DG⁡vector,M,,1,−2⁢r3⁢x3+3⁢m2⁢r⁢x+m3r32⁢2⁢x⁢r−3⁢m⁢x⁢m,2,−mr⁢2⁢x⁢r−3⁢m⁢x,3,−4⁢x2r⁢2⁢x⁢r−3⁢m,_DG⁡vector,M,,1,−I⁢2⁢x32⁢rm,3,−I⁢2⁢x32r,4,−2⁢x32r,_DG⁡vector,M,,1,−I⁢2⁢x32⁢rm,3,−I⁢2⁢x32r,4,−2⁢x32r,_DG⁡vector,M,,1,I⁢2⁢x32⁢rm,3,I⁢2⁢x32r,4,−2⁢x32r,_DG⁡vector,M,,1,I⁢2⁢x32⁢rm,3,I⁢2⁢x32r,4,−2⁢x32r
Calculate the Newman-Penrose coefficients for the new null tetrad. We obtain the correct normal form (with η = −mr3 ) since Ψ0= Ψ1 = Ψ3 = 0 and Ψ2 = η, Ψ4 = 6 η.
newNP2 ≔ NPCurvatureScalars⁡newNT2,output=WeylScalars
newNP2:=tablePsi1=0,Psi0=0,Psi2=−mr3,Psi4=−6⁢mr3,Psi3=0
Example 3. Type III
We calculate an adapted null tetrad for a type III spacetime. First define the coordinates to be used and then define the metric.
g3 ≔ evalDG⁡−r2⁢dx &t dx+dy &t dyx3+2⁢du &s dr−3⁢x⁢du &t du2
g3:=_DG⁡tensor,M,cov_bas,cov_bas,,1,2,1,2,1,1,2,2,−3⁢x2,3,3,−r2x3,4,4,−r2x3,_DG⁡tensor,M,cov_bas,cov_bas,,1,2,1,2,1,1,2,2,−3⁢x2,3,3,−r2x3,4,4,−r2x3
NT3 ≔ evalDG⁡3⁢x8+12⁢D_r+1⁢D_u2+1⁢2⁢x32⁢D_y2⁢r,3⁢x8+12⁢D_r+1⁢D_u2−1⁢2⁢x32⁢D_y2⁢r,−3⁢x8+12⁢D_r−1⁢D_u2+1⁢I⁢2⁢x32⁢D_x2⁢r,−3⁢x8+12⁢D_r−1⁢D_u2−1⁢I⁢2⁢x32⁢D_x2⁢r
NT3:=_DG⁡vector,M,,1,3⁢x8+12,2,12,4,2⁢x322⁢r,_DG⁡vector,M,,1,3⁢x8+12,2,12,4,2⁢x322⁢r,_DG⁡vector,M,,1,3⁢x8+12,2,12,4,−2⁢x322⁢r,_DG⁡vector,M,,1,3⁢x8+12,2,12,4,−2⁢x322⁢r,_DG⁡vector,M,,1,−3⁢x8+12,2,−12,3,I2⁢2⁢x32r,_DG⁡vector,M,,1,−3⁢x8+12,2,−12,3,I2⁢2⁢x32r,_DG⁡vector,M,,1,−3⁢x8+12,2,−12,3,−I2⁢2⁢x32r,_DG⁡vector,M,,1,−3⁢x8+12,2,−12,3,−I2⁢2⁢x32r
GRQuery⁡NT3,g3,NullTetrad
Compute the Newman-Penrose coefficients and check that the Petrov type is III. The coefficients are not in normal form for type III (for example, Ψ1 ≠ 0), so NT3 is not an adapted null tetrad.
NP3 ≔ NPCurvatureScalars⁡NT3,output=WeylScalars
NP3:=tablePsi1=−332⁢2⁢I⁢2+3⁢x⁢x3/2r2,Psi0=332⁢x⁢4⁢I⁢2⁢x+3⁢xr2,Psi2=932⁢x2r2,Psi4=−332⁢x⁢4⁢I⁢2⁢x−3⁢xr2,Psi3=332⁢2⁢I⁢2−3⁢x⁢x3/2r2
PetrovType⁡NP3
III
Calculate an adapted null tetrad.
newNT3 ≔ AdaptedNullTetrad⁡NT3,III,NP3assuming0<x
newNT3:=_DG⁡vector,M,,1,3⁢2⁢x328⁢r2,_DG⁡vector,M,,1,3⁢2⁢x328⁢r2,_DG⁡vector,M,,1,11⁢2⁢r28⁢x,2,4⁢2⁢r23⁢x32,3,r⁢x⁢2,_DG⁡vector,M,,1,11⁢2⁢r28⁢x,2,4⁢2⁢r23⁢x32,3,r⁢x⁢2,_DG⁡vector,M,,1,3⁢2⁢x8,3,2⁢x322⁢r,4,I2⁢2⁢x32r,_DG⁡vector,M,,1,3⁢2⁢x8,3,2⁢x322⁢r,4,I2⁢2⁢x32r,_DG⁡vector,M,,1,3⁢2⁢x8,3,2⁢x322⁢r,4,−I2⁢2⁢x32r,_DG⁡vector,M,,1,3⁢2⁢x8,3,2⁢x322⁢r,4,−I2⁢2⁢x32r
Calculate the Newman-Penrose coefficients for the new null tetrad. We obtain the correct normal form since Ψ0 = Ψ1= Ψ2 = Ψ4 =0 and Ψ3= 1 .
NPCurvatureScalars⁡newNT3,output=WeylScalars
tablePsi1=0,Psi0=0,Psi2=0,Psi4=0,Psi3=1
Example 4. Type D
We calculate an adapted null tetrad for a type D spacetime. First define the coordinates to be used and then define the metric.
g4 ≔ evalDG⁡−dx &t dx−dy &t dy−1⁢ⅇ2⁢x⁢dz &t dz2+dt+ⅇx⁢dz &s dt+ⅇx⁢dz
g4:=_DG⁡tensor,M,cov_bas,cov_bas,,1,1,1,1,4,ⅇx,2,2,−1,3,3,−1,4,1,ⅇx,4,4,ⅇ2⁢x2,_DG⁡tensor,M,cov_bas,cov_bas,,1,1,1,1,4,ⅇx,2,2,−1,3,3,−1,4,1,ⅇx,4,4,ⅇ2⁢x2
NT4 ≔ evalDG⁡−1⁢2⁢2−1⁢D_t2+ⅇ−x⁢D_z,1⁢2⁢1+2⁢D_t2−ⅇ−x⁢D_z,1⁢2⁢D_x2+1⁢I⁢2⁢D_y2,1⁢2⁢D_x2−1⁢I⁢2⁢D_y2
NT4:=_DG⁡vector,M,,1,−2⁢2−12,4,ⅇ−x,_DG⁡vector,M,,1,−2⁢2−12,4,ⅇ−x,_DG⁡vector,M,,1,2⁢2+12,4,−ⅇ−x,_DG⁡vector,M,,1,2⁢2+12,4,−ⅇ−x,_DG⁡vector,M,,2,22,3,I2⁢2,_DG⁡vector,M,,2,22,3,I2⁢2,_DG⁡vector,M,,2,22,3,−I2⁢2,_DG⁡vector,M,,2,22,3,−I2⁢2
GRQuery⁡NT4,g4,NullTetrad
Compute the Newman-Penrose coefficients and check that the Petrov type is D. The coefficients are not in normal form for type D (for example, Ψ0 ≠ 0), so NT4 is not an adapted null tetrad.
NP4 ≔ NPCurvatureScalars⁡NT4,output=WeylScalars
NP4:=tablePsi1=0,Psi0=14,Psi2=112,Psi4=14,Psi3=0
PetrovType⁡NP4
D
newNT4 ≔ AdaptedNullTetrad⁡NT4,D
newNT4:=_DG⁡vector,M,,1,2,3,−2,_DG⁡vector,M,,1,2,3,−2,_DG⁡vector,M,,1,24,3,24,_DG⁡vector,M,,1,24,3,24,_DG⁡vector,M,,1,−I,2,22,4,I⁢ⅇ−x,_DG⁡vector,M,,1,−I,2,22,4,I⁢ⅇ−x,_DG⁡vector,M,,1,I,2,22,4,−I⁢ⅇ−x,_DG⁡vector,M,,1,I,2,22,4,−I⁢ⅇ−x
Calculate the Newman-Penrose coefficients for the new null tetrad. We obtain the correct normal form since Ψ0= Ψ1 = Ψ3 =Ψ4 = 0.
newNP ≔ NPCurvatureScalars⁡newNT4,output=WeylScalars
newNP:=tablePsi1=0,Psi0=0,Psi2=−16,Psi4=0,Psi3=0
Example 5. Type N
We calculate an adapted null tetrad for a type N spacetime. First define the coordinates to be used and then define the metric.
DGsetup⁡u,x,y,z,M
g5 ≔ evalDG⁡ⅇ−2⁢z⁢du &t dx+ⅇ−2⁢z⁢dx &t du+ⅇz⁢dx &t dx−ⅇ−2⁢z⁢dy &t dy−dz &t dz
g5:=_DG⁡tensor,M,cov_bas,cov_bas,,1,2,ⅇ−2⁢z,2,1,ⅇ−2⁢z,2,2,ⅇz,3,3,−ⅇ−2⁢z,4,4,−1,_DG⁡tensor,M,cov_bas,cov_bas,,1,2,ⅇ−2⁢z,2,1,ⅇ−2⁢z,2,2,ⅇz,3,3,−ⅇ−2⁢z,4,4,−1
Here is the initial null tetrad.
NT5 ≔ evalDG⁡−1⁢ⅇ3⁢z−2⁢ⅇz⁢D_u4+1⁢ⅇz⁢D_x2+1⁢2⁢D_z2,−1⁢ⅇ3⁢z−2⁢ⅇz⁢D_u4+1⁢ⅇz⁢D_x2−1⁢2⁢D_z2,1⁢ⅇ3⁢z+2⁢ⅇz⁢D_u4−1⁢ⅇz⁢D_x2+1⁢I⁢2⁢ⅇz⁢D_y2,1⁢ⅇ3⁢z+2⁢ⅇz⁢D_u4−1⁢ⅇz⁢D_x2−1⁢I⁢2⁢ⅇz⁢D_y2
NT5:=_DG⁡vector,M,,1,−ⅇ3⁢z−2⁢ⅇz4,2,ⅇz2,4,22,_DG⁡vector,M,,1,−ⅇ3⁢z−2⁢ⅇz4,2,ⅇz2,4,22,_DG⁡vector,M,,1,−ⅇ3⁢z−2⁢ⅇz4,2,ⅇz2,4,−22,_DG⁡vector,M,,1,−ⅇ3⁢z−2⁢ⅇz4,2,ⅇz2,4,−22,_DG⁡vector,M,,1,ⅇ3⁢z+2⁢ⅇz4,2,−ⅇz2,3,I2⁢2⁢ⅇz,_DG⁡vector,M,,1,ⅇ3⁢z+2⁢ⅇz4,2,−ⅇz2,3,I2⁢2⁢ⅇz,_DG⁡vector,M,,1,ⅇ3⁢z+2⁢ⅇz4,2,−ⅇz2,3,−I2⁢2⁢ⅇz,_DG⁡vector,M,,1,ⅇ3⁢z+2⁢ⅇz4,2,−ⅇz2,3,−I2⁢2⁢ⅇz
GRQuery⁡NT5,g5,NullTetrad
Compute the Newman-Penrose coefficients and check that the Petrov type is N. The coefficients are not in normal form for type N (for example, Ψ1 ≠ 0), so NT5 is not an adapted null tetrad.
NP5 ≔ NPCurvatureScalars⁡NT5,output=WeylScalars
NP5:=tablePsi1=−38⁢ⅇ3⁢z,Psi0=38⁢ⅇ3⁢z,Psi2=38⁢ⅇ3⁢z,Psi4=38⁢ⅇ3⁢z,Psi3=−38⁢ⅇ3⁢z
PetrovType⁡NP5
N
newNT5 ≔ AdaptedNullTetrad⁡NT5,N,NP5assuming0<z
newNT5:=_DG⁡vector,M,,1,ⅇ5⁢z2⁢62,_DG⁡vector,M,,1,ⅇ5⁢z2⁢62,_DG⁡vector,M,,1,−6⁢ⅇ3⁢z−2⁢ⅇ−z26,2,ⅇ−z2⁢63,4,2⁢3⁢ⅇ−3⁢z23,_DG⁡vector,M,,1,−6⁢ⅇ3⁢z−2⁢ⅇ−z26,2,ⅇ−z2⁢63,4,2⁢3⁢ⅇ−3⁢z23,_DG⁡vector,M,,1,−ⅇz,3,I2⁢2⁢ⅇz,4,−22,_DG⁡vector,M,,1,−ⅇz,3,I2⁢2⁢ⅇz,4,−22,_DG⁡vector,M,,1,−ⅇz,3,−I2⁢2⁢ⅇz,4,−22,_DG⁡vector,M,,1,−ⅇz,3,−I2⁢2⁢ⅇz,4,−22
Calculate the Newman-Penrose coefficients for the new null tetrad. We obtain the correct normal form since Ψ0= Ψ1 = Ψ2 =Ψ3 = 0 and Ψ4 =1.
newNP5 ≔ NPCurvatureScalars⁡newNT5,output=WeylScalars
newNP5:=tablePsi1=0,Psi0=0,Psi2=0,Psi4=1,Psi3=0
See Also
DifferentialGeometry
Tensor
AdaptedSpinorDyad
FactorWeylSpinor
NPCurvatureScalars
NullVector
PetrovType
WeylSpinor
Download Help Document