SymbolAlgebra - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


LieAlgebras[SymbolAlgebra] - find the symbol algebra for a distribution

Calling Sequences

     SymbolAlgebra(D, pt, alg, option)

Parameters

   D       - a list of vectors on a manifold M

   pt      - a list of equations specifying a point on M

   alg     - a name or string, the name to be assigned to the symbol algebra

   option  - (optional keyword arguments) output = "WeakDerivedFlag" , order = "Increasing", order = "Decreasing",

Description

• 

 In differential geometry a distribution is a set of vector fields 𝒟 defined on a manifold M. The sequence of distributions defined inductively by

𝒟0 = 𝒟 ,  𝒟1= [𝒟0 , 𝒟0] + 𝒟0 , ...,  𝒟i+1= [𝒟0 , 𝒟i] + 𝒟i 

is called the weak derived flag of the distribution. These distributions satisfy 𝒟i  𝒟i+1 and [𝒟i , 𝒟j]𝒟i+j. The symbol algebra 𝔪x𝒟 for the distribution 𝒟 at the point x M is the graded nilpotent Lie algebra defined by

𝔪x𝒟= p= 1p =  μ 𝔤px   where  𝔤1x = 𝒟x0,   𝔤2x = 𝒟x1/𝒟x0 , ... , 𝔤px = 𝒟xp +1/𝒟xp+2, ...

The grading weight of 𝔤px is p.

• 

The command SymbolAlgebra((D, pt, alg) returns the structure equations for the symbol algebra of 𝒟 at the point specified by the second argument. These structure equations can be initialized with DGsetup. The command DGinfo can be used to view the grading of the symbol algebra.

• 

With the keyword argument output = "WeakDerivedFlag", the structure equations for the symbol algebra and the vector fields defining the weak derived flag [𝒟0, 𝒟1, 𝒟2, ...] are returned.

• 

The basis used to define the symbol algebra is given in terms of decreasing weights. For example, if 𝔪 = 𝔤1 𝔤2𝔤3 with dim 𝔤1= 4, dim 𝔤2= 2 and dim 𝔤3= 1, then 𝔤1 =e1, e2, e3, e4, 𝔤2 =e5, e6 and 𝔤3 =e7. With the keyword argument order = "Increasing", the basis used to define the symbol algebra is given in terms of increasing weights so that, for example, if 𝔪= 𝔤3 𝔤2𝔤1, then 𝔤3 =e1, 𝔤2 =e2, e3 and 𝔤1 =e4, e5, e6 ,e7.

See Also

DifferentialGeometry

LieAlgebras

DGinfo

Query

TanakaProlongation

Examples

with(DifferentialGeometry): with(LieAlgebras):

 

Example 1.

In this example we find the symbol algebra for the Hilbert-Cartan equation z' = y''2.

 

First create a 5-dimensional manifold.

DGsetup([x, y, z, y1, y2], M);

frame name: M

(1)

 

Define the rank 3 distribution for the Hilbert-Cartan equation z''=y''2.

M > 

Delta := [D_x + y1*D_y + y2*D_y1 + y2^2*D_z, D_y2];

Δ:=D_x+y1D_y+y2D_y1+y22D_z,D_y2

(2)

 

Calculate the symbol algebra and initialize.

M > 

LD := SymbolAlgebra(Delta, [x = 0, y = 0, y1 = 0, y2 = 0, z = 0], alg);

LD:=e1,e2=e3,e1,e3=e4,e2,e3=e5

(3)
M > 

DGsetup(LD);

Lie algebra: alg

(4)

 

Here is the multiplication table.

M > 

MultiplicationTable("LieTable");

 

The algebra is nilpotent

alg > 

Query("Nilpotent");

true

(5)

 

Here is the grading of the algebra as a list and in table format.

alg > 

Gr := Tools:-DGinfo("Grading");

Gr:=1,1,2,3,3

(6)
alg > 

convert(Gr, DGgrading, "table", [e1, e2, e3, e4, e5]);

table3=e4,e5,2=e3,1=e1,e2

(7)

 

Example 2.

We continue with the distribution given in Example 1. We use the keyword argument output = "WeakDerivedFlag" to display the weak derived flag used to calculate the symbol algebra.

alg > 

SymbolAlgebra(Delta, [x = 0, y = 0, y1 = 0, y2 = 0, z = 0], alg, output = "WeakDerivedFlag");

e1,e2=e3,e1,e3=e4,e2,e3=e5,D_x+y1D_y+y22D_z+y2D_y1,D_y2,2y2D_zD_y1,D_y,2D_z

(8)

 

We use the second calling sequence to give the symbol algebra in ascending grading order.

M > 

LD2 := SymbolAlgebra(Delta, [x = 0, y = 0, y1 = 0, y2 = 0, z = 0], alg2, order = "Increasing");

LD2:=e3,e4=e1,e3,e5=e2,e4,e5=e3

(9)
M > 

DGsetup(LD2);

Lie algebra: alg2

(10)

 

Here is the multiplication table and the grading.

alg2 > 

MultiplicationTable("LieTable"), Tools:-DGinfo("Grading");

 

Example 3.

In this example we find the symbol algebra for the jet space J2R2,R. First create an 8 dimensional manifold.

alg2 > 

DGsetup([x, y, z, p, q, r, s, t], M3);

frame name: M3

(11)

 

Define the rank 3 distribution for the canonical system on jet space.

M3 > 

Delta3 := evalDG([D_x + p*D_z + r*D_p + s*D_q, D_y + q*D_z + s*D_p + t*D_q, D_r, D_s, D_t]);

Δ3:=D_x+pD_z+rD_p+sD_q,D_y+qD_z+sD_p+tD_q,D_r,D_s,D_t

(12)

 

Calculate the symbol algebra and initialize it.

M3 > 

LD3 := SymbolAlgebra(Delta3, [x = 0, y = 0, z = 0, p =0, q = 0, r = 0, s = 0, t = 0], alg3);

LD3:=e1,e4=e6,e2,e4=e7,e2,e5=e6,e3,e5=e7,e4,e6=e8,e5,e7=e8

(13)
M > 

DGsetup(LD3);

Lie algebra: alg3

(14)

 

Here is the multiplication table and the grading.

alg2 > 

MultiplicationTable("LieTable"), Tools:-DGinfo("Grading");