RestrictedRepresentation - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


LieAlgebras[RestrictedRepresentation] - find the restriction of a representation of a subalgebra

Calling Sequences

     RestrictedRepresentation(ρ, alg,W)

Parameters

     ρ         - a representation of a Lie algebra ρ on a vector space V

     alg       - a Maple name or string, giving the frame name of an initialized algebra, corresponding to a subalgebra of 𝔤

     H         - (optional) a list of vectors in 𝔤 defining a basis for a subalgebra of 𝔤

 

Description

Examples

Description

• 

If ρ:𝔤  glV is a representation and 𝔥 is a subalgebra of 𝔤 , then the restriction of ρ to 𝔥 is the representation φ:𝔥  glV defined by φxY =ρxY, where x  𝔥 and Y  V. 

• 

The command RestrictedRepresentation(rho, alg, H) returns the restriction of the representation ρ to the subalgebra defined by the vectors in the list H. The subalgebra defined by the vectors H must be initialized as a Lie algebra in its own right with the name alg.

• 

If the basis e1, e2 ,e3, ... , en  for 𝔤 is adapted to the subalgebra defined by H in the sense that H = [e1, e2 ,... ,ep ], then the list H need not be specified in the calling sequence for RestrictedRepresentation.

Examples

withDifferentialGeometry:withLieAlgebras:withLibrary:

 

Example 1.

We shall define a 4-dimensional representation ρ of a 4-dimensional Lie algebra taken from the DifferentialGeometry Library, define a subalgebra, and calculate the restricted representation of ρ to the subalgebra..

LRetrieveWinternitz,1,4,7,Alg

L:=e1,e4=2e1,e2,e3=e1,e2,e4=e2,e3,e4=e2+e3

(2.1)

 

Initialize the Lie algebra Alg1.

V > 

DGsetupL:

 

Initialize the representation space V.

Alg1 > 

DGsetupx1,x2,x3,x4,V:

 

 

Define the adjoint representation.

V > 

ρAdjointAlg,representationspace=V

 

Define a 2-dimensional abelian subalgebra of Alg1 using the command LieAlgebraData.

Alg1 > 

H1e1,e2

H1:=e1,e2

(2.2)
Alg1 > 

L1LieAlgebraDataH1,Alg1

L1:=

(2.3)
Alg1 > 

DGsetupL1,P,p

Lie algebra: Alg1

(2.4)
Alg1 > 

ρ1RestrictedRepresentationρ,Alg1

Alg1 > 

Queryρ1,Representation

true

(2.5)

 

Example 2.

Define a 2 dimensional solvable subalgebra of Alg1, one that is not adapted to the basis e1, e2, e3, e4.

Alg2 > 

H2e4+e2,e2

H2:=e4+e2,e2

(2.6)
Alg1 > 

L2LieAlgebraDataH2,Alg2

L2:=e1,e2=e2

(2.7)
Alg1 > 

DGsetupL2,Q,q

Lie algebra: Alg2

(2.8)
Alg1 > 

ρ2RestrictedRepresentationρ,Alg2,H2

Alg1 > 

Queryρ2,Representation

true

(2.9)

 

See Also

DifferentialGeometry

Library

LieAlgebras

LieAlgebraData

Query

Representation

Retrieve