Codifferential - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


LieAlgebras[Codifferential] - calculate the codifferential of a multi-vector defined on a Lie algebra with coefficients in a representation

Calling Sequences

     Codifferential(Z)

Parameters

     Z     - a multi-vector defined on a Lie algebra, or on a Lie algebra with coefficients in a representation V

   

 

Description

Examples

Description

• 

Let 𝔤  be a Lie algebra. The codifferential  of monomial bi-vectors and tri-vectors on 𝔤 is defined by

 x1  x2 = x1, x2   and   x1 x2  x3 = x1, x2 x3  x1 ,x2 x3  + x2, x3 x1  .

The formula for a general monomial multi-vector is

 x1  x2  xp &equals;i<j1i &plus;j &plus;1xi &comma; xj x1    xi   xj  xp

where the barred vectors are omitted from the wedge product. A general multi-vector of degree p is a superposition of monomials of degree p. The definition of the codifferential is extended to all multi-vectors by linearity.

• 

Let &rho;&colon; &gfr; glV be a representation of &gfr; on a vector space V&period; For x  &gfr; and w  V, write &rho;xw &equals; x w&period; For multi-vectors with coefficients in V, the above formulas for the codifferential are amended to

 

w x1  x2 &equals; x1wx2  x2 wx1 &plus; wx1&comma; x2,

 

w x1 x2  x3 &equals;x1&grave;wx2x3  x2 wx1x3  &plus; x3wx1x2 &plus; x1&comma; x2 x3  x1 &comma;x2 x3  &plus; x2&comma; x3 x1  and, in general,

w x1  x2  xp &equals;i&equals;1p1i &plus;1xi w x1    xi  xp  &plus; i<j1i &plus;j &plus;1xi &comma; xj x1    xi   xj  xp&period;

 

Again, these definitions are extended to all multi-vectors by linearity.

 

• 

The command Codifferential computes the codifferential of a multi-vector Z. Note that if Z has degree p, then Z has degree  p1.

• 

The co-differential satisfies 2 &equals;0  It commutes with the Lie derivative Z and satisfies, for any vector X, &Zscr;XZ &equals; X Z &plus;  X Z &period;

Examples

withDifferentialGeometry&colon;withLieAlgebras&colon;

 

Example 1.

 

First initialize a 5-dimensional Lie algebra.

LD1LieAlgebraDatax2&comma;x3=x1&comma;x2&comma;x5=x3&comma;x4&comma;x5=x4&comma;x1&comma;x2&comma;x3&comma;x4&comma;x5&comma;alg

LD1:=e2&comma;e3&equals;e1&comma;e2&comma;e5&equals;e3&comma;e4&comma;e5&equals;e4

(2.1)

DGsetupLD1

Lie algebra: alg

(2.2)

 

Define a bi-vector and calculate its codifferential.

alg > 

ZevalDGae2&we3+be2&we5+ce2&we4

Z:=ae2e3&plus;ce2e4&plus;be2e5

(2.3)
alg > 

CodifferentialZ

ae1&plus;be3

(2.4)

 

Define a tri-vector and calculate its codifferential.

alg > 

ZevalDGae2&we3&we4+be3&we4&we5

Z:=ae2e3e4&plus;be3e4e5

(2.5)
alg > 

WCodifferentialZ

W:=ae1e4be3e4

(2.6)

 

Check that 2Z &equals;0. 

alg > 

CodifferentialW

0e1

(2.7)

 

Example 2.

In this example we calculate the codifferentials for some multi-vectors defined on a Lie algebra with coefficients in a representation. For this example we shall use the Lie algebra so4and its standard 4-dimensional representation. To create the computational environment we use the commands SimpleLieAlgebraData, StandardRepresentation and Representation.

 

LD2SimpleLieAlgebraDataso(4)&comma;so4

LD2:=e1&comma;e2&equals;e4&comma;e1&comma;e3&equals;e5&comma;e1&comma;e4&equals;e2&comma;e1&comma;e5&equals;e3&comma;e2&comma;e3&equals;e6&comma;e2&comma;e4&equals;e1&comma;e2&comma;e6&equals;e3&comma;e3&comma;e5&equals;e1&comma;e3&comma;e6&equals;e2&comma;e4&comma;e5&equals;e6&comma;e4&comma;e6&equals;e5&comma;e5&comma;e6&equals;e4

(2.8)
Alg1 > 

DGsetupLD2

Lie algebra: so4

(2.9)
so4 > 

AStandardRepresentationso4

 

Create a 4-dimensional vector space to serve as the representation space.

so4 > 

DGsetupw1&comma;w2&comma;w3&comma;w4&comma;V

frame name: V

(2.10)
Alg1 > 

ρRepresentationso4&comma;V&comma;A

 

Initialize the Lie algebra so4 with coefficients in the standard representation.

V > 

DGsetupso4&comma;ρ&comma;so4V

Lie algebra with coefficients: so4V

(2.11)

 

Calculate the codifferential of a bi-vector.

V > 

ZevalDGw1e1&we2

Z:=w1e1e2

(2.12)
so4V > 

CodifferentialZ

w3e1&plus;w2e2&plus;w1e4

(2.13)

 

Calculate the codifferential of a multi-vector of degree 4.

so4V > 

ZevalDGw4e1&we2&we5&we6

Z:=w4e1e2e5e6

(2.14)
so4V > 

WCodifferentialZ

W:=w4e1e2e4&plus;w3e1e2e5w2e1e2e6w4e1e3e5w4e2e3e6&plus;w4e4e5e6

(2.15)

 

Check that 2Z &equals;0.  

so4V > 

CodifferentialW

0e1e2

(2.16)

See Also

DifferentialGeometry

LieAlgebras

Adjoint

ExteriorDerivative

Representation

SimpleLieAlgebraData

StandardRepresentation