ChangeRepresentationBasis - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : DifferentialGeometry : LieAlgebras : ChangeRepresentationBasis

LieAlgebras[ChangeRepresentationBasis] - change the basis for a representation, either in the Lie algebra or in the representation space

Calling Sequences

    ChangeRepresentationBasis(ρ, B, Fr)

    ChangeRepresentationBasis(ρ, P, keyword, Fr)

Parameters

     ρ          - a representation of a Lie algebra 𝔤 on a vector space V

     B          - a list of vectors defining a new basis B for either 𝔤 or V

     Fr         - a Maple name or string, the name of the Lie algebra or vector space with the new basis B

     P          - a change of basis matrix, the columns of which are the components of the new basis vectors B with respect to the original basis

     keyword    - either "Domain" or "Range", indicating that the matrix P is a change of basis matrix for the Lie algebra or the representation space

 

Description

Examples

Description

• 

Let ρ: 𝔤  glV be a representation of a Lie algebra 𝔤 on a vector space V. Let e1, e2, ... ,enbe the given basis for 𝔤 and let E1, E2, ... ,Embe the given basis for V. Let ρei = Mi , the matrix representing the linear transformation ρeiwith respect to the basis Er. If Fs is another basis for the representation space V, then in this new basis ρei = Si , where Si=P1Mi P and P is the change of basis matrix whose columns are the components of Fs with respect to the basis Er. If fj is another basis for 𝔤, then ρfj = Tj , where Tj = in Q ji Mi and Q is the change of basis matrix whose columns are the components of the fj with respect to the ei, that is, fj = in Q ji ei .

• 

If B = Fs is a list of vectors defining a basis for V, then ChangeReperesentationBasis(ρ B, Fr) computes the matrices Si for the representation ρ with respect to the basis Fs. If P is the change of basis matrix, then the calling sequence ChangeRepresentationBasis(ρ, P, "Range", Fr) produces the same result.

• 

If B = fj is a list of vectors defining a basis for 𝔤, then ChangeRepresentationBasis(ρ, B, Fr) computes the matrices Ti for the representation ρ with respect to the basis fj. If Q is the change of basis matrix, then the command ChangeRepresentationBasis(ρ, Q, "Domain", Fr) produces the same result.

Examples

withDifferentialGeometry:withLieAlgebras:

 

Example 1.

We define a representation and make a change of basis for the representation space.

LLieAlgebraDatax1,x3=x3,x1,x4=x4,x2,x4=x3,x1,x2,x3,x4,Alg1

L:=e1,e3=e3,e1,e4=e4,e2,e4=e3

(2.1)

DGsetupL

Lie algebra: Alg1

(2.2)
Alg1 > 

DGsetupx,y,z,V

frame name: V

(2.3)
V > 

MMatrix1,0,0,0,1,0,0,0,0,Matrix0,1,0,0,0,0,0,0,0,Matrix0,0,1,0,0,0,0,0,0,Matrix0,0,0,0,0,1,0,0,0:

V > 

ρRepresentationAlg1,V,M

 

Define the new basis for the representation space.

Alg1 > 

BevalDGD_x+D_y+D_z,D_xD_y,D_x+2D_y+D_z

B:=D_x+D_y+D_z,D_xD_y,D_x+2D_y+D_z

(2.4)

 

Compute the representation φ1in the basis B.

V > 

φ1ChangeRepresentationBasisρ,B,V

 

We can use the Query command to check that φ1is a representation of Alg1.

Alg1 > 

Queryφ1,Representation

true

(2.5)

 

Check, by example, that the matrices for are correct. We apply rho(e1) to Fr[1] and express the result as a linear combination of the vectors Fr. This should give the first column of the matrix for e1 in phi1.

Alg1 > 

aApplyRepresentationρ,e1,B1

a:=D_x+D_y

(2.6)
V > 

GetComponentsa,B

2,1,2

(2.7)

 

Example 2.

We obtain the same change of basis as in Example 1 using the other calling sequence for the procedure ChangeRepresentationBasis. We take the matrix A to be the matrix whose columns are the coefficients of the new basis in terms of the old.

V > 

B

D_x+D_y+D_z,D_xD_y,D_x+2D_y+D_z

(2.8)
V > 

PLinearAlgebra:-TransposeMatrixGetComponentsB,D_x,D_y,D_z

V > 

φ2ChangeRepresentationBasisρ,P,Range,V

 

Example 3.

Now we make a change of basis in the Lie algebra. First we use the LieAlgebraData command to create the Lie algebra in the new basis.

Alg1 > 

ChangeFrameAlg1

Alg1

(2.9)
Alg1 > 

BevalDGe1+e2,e3e2,e22e3,e1e3+e4

B:=e1+e2,e2+e3,e22e3,e1e3+e4

(2.10)
Alg1 > 

L2LieAlgebraDataB,Alg2

L2:=e1,e2=e2e3,e1,e3=2e2+2e3,e1,e4=e13e22e3+e4,e2,e4=2e2+2e3,e3,e4=3e23e3

(2.11)
Alg1 > 

DGsetupL2,f,θ

Lie algebra: Alg2

(2.12)
Alg2 > 

φ3ChangeRepresentationBasisρ,B,Alg2

Alg2 > 

Queryφ3,Representation

true

(2.13)

 

Example 4. We obtain the same change of basis as in Example 3 using the other calling sequence for the procedure ChangeRepresentationBasis. We take the matrix A to be the matrix whose columns are the coefficients of the new basis in terms of the old.

Alg2 > 

B

e1+e2,e2+e3,e22e3,e1e3+e4

(2.14)
Alg1 > 

PLinearAlgebra:-TransposeMatrixGetComponentsB,e1,e2,e3,e4

Alg1 > 

φ4ChangeRepresentationBasisρ,P,Domain,Alg2

See Also

DifferentialGeometry

LieAlgebras

ChangeFrame

GetComponents

LieAlgebraData

Query