convert/Cylinder
convert special functions admitting 1F1 or 0F1 hypergeometric representation into Cylinder functions
Calling Sequence
Parameters
Description
Examples
convert(expr, Cylinder)
expr
-
Maple expression, equation, or set or list of them
convert/Cylinder converts, when possible, special functions admitting a 1F1 or 0F1 hypergeometric representation into Cylinder functions. The Cylinder functions are
FunctionAdvisor( Cylinder );
The 3 functions in the "Cylinder" class are:
CylinderD,CylinderU,CylinderV
HermiteH⁡a,z⁢LaguerreL⁡1⁢a2,−12,1⁢z22
HermiteH⁡a,z⁢LaguerreL⁡a2,−12,z22
convert⁡,Cylinder
CylinderD⁡a,z⁢2⁢ⅇz22⁢a2−12a2⁢ⅇz24⁢Γ⁡12−a2⁢CylinderD⁡a,z2⁢π+CylinderD⁡a,z⁢2⁢ⅇz22⁢a2−12a2⁢ⅇz24⁢Γ⁡12−a2⁢CylinderD⁡a,−z2⁢π
erfc⁡a,z
convert⁡,Cylinderassuminga::posint
CylinderD⁡−1−a,z⁢2⁢2ⅇz22⁢2a⁢π
2⁢Pi12⁢z⁢hypergeom⁡1⁢a2+34,32,1⁢z2221⁢a2−14⁢GAMMA⁡1⁢a2+14+Pi12⁢hypergeom⁡1⁢a2+14,12,1⁢z22GAMMA⁡1⁢a2+34⁢21⁢a2−34
2⁢π⁢z⁢hypergeom⁡a2+34,32,z222a2−14⁢Γ⁡a2+14+π⁢hypergeom⁡a2+14,12,z22Γ⁡a2+34⁢2a2−34
ⅇz24⁢2a2+14⁢2a2−14−2a2+34⁢2a2−34⁢CylinderD⁡−a−12,z2⁢2a2−14⁢2a2−34+ⅇz24⁢2a2+14⁢2a2−14+2a2+34⁢2a2−34⁢CylinderD⁡−a−12,−z2⁢2a2−14⁢2a2−34
collect⁡,CylinderD,simplify
2⁢ⅇz24⁢CylinderD⁡−a−12,−z
When converting to a function class (e.g. Cylinder) it is possible to request additional conversion rules to be performed. Compare for instance these two different outputs:
MeijerG⁡14−1⁢a2,,0,−12,−1⁢z22
MeijerG⁡14−a2,,0,−12,−z22
−ⅇz24⁢2a2+34⁢Γ⁡12+a⁢CylinderD⁡−a−12,z2⁢π⁢z⁢2−12+a+ⅇz24⁢CylinderD⁡−a−12,−z⁢2a2+34⁢Γ⁡12+a2⁢π⁢z⁢2−12+a
convert⁡,Cylinder,raise a
ⅇz24⁢2a2+34⁢Γ⁡12+a⁢CylinderD⁡12−a,z2⁢a−1⁢π⁢2−12+a+ⅇz24⁢2a2+34⁢Γ⁡12+a⁢CylinderD⁡12−a,−z2⁢a−1⁢π⁢2−12+a−ⅇz24⁢2a2+34⁢Γ⁡12+a⁢CylinderD⁡32−a,z2⁢a−1⁢π⁢z⁢2−12+a+ⅇz24⁢CylinderD⁡32−a,−z⁢2a2+34⁢Γ⁡12+a2⁢a−1⁢π⁢z⁢2−12+a
See Also
convert
convert/to_special_function
FunctionAdvisor
Download Help Document