radfun - Maple Help

check for a radical function

Parameters

 expr - expression K - type name for the coefficient domain V - variable or a list or set of variables

Description

 • An expression expr is of type radfun (radical function) if it is a rational function in the variable(s) V over the domain K extended by radicals or the number I.
 • If no variables were specified, all the indeterminates of expr which are names are used, so expr must be an algebraic function in all of its variables.
 • If no domain is specified, the default domain 'constant' is used.

Examples

 > $\mathrm{type}\left(\frac{x}{1-x},\mathrm{radfun}\left(\mathrm{integer}\right)\right)$
 ${\mathrm{true}}$ (1)
 > $\mathrm{type}\left(\mathrm{sqrt}\left(x-y\right),\mathrm{radfun}\left(\mathrm{rational},\left[x,y\right]\right)\right)$
 ${\mathrm{true}}$ (2)
 > $\mathrm{type}\left(\mathrm{sqrt}\left(x-\mathrm{sin}\left(y\right)\right),\mathrm{radfun}\left(\mathrm{anything},x\right)\right)$
 ${\mathrm{true}}$ (3)
 > $\mathrm{type}\left(\mathrm{sqrt}\left(x-\mathrm{sin}\left(y\right)\right),\mathrm{radfun}\left(\mathrm{anything},y\right)\right)$
 ${\mathrm{false}}$ (4)
 > $\mathrm{type}\left(\mathrm{sqrt}\left(x+1\right),\mathrm{radfun}\right)$
 ${\mathrm{true}}$ (5)
 > $\mathrm{type}\left(\mathrm{sqrt}\left(x+\mathrm{sqrt}\left(2\right)\right),\mathrm{radfun}\left(\mathrm{rational},x\right)\right)$
 ${\mathrm{true}}$ (6)
 > $\mathrm{type}\left(\mathrm{sqrt}\left(x+\mathrm{sqrt}\left(y\right)\right),\mathrm{radfun}\right)$
 ${\mathrm{true}}$ (7)
 > $\mathrm{type}\left(\mathrm{sqrt}\left(x+\mathrm{exp}\left(x\right)\right),\mathrm{radfun}\right)$
 ${\mathrm{false}}$ (8)