 
													Maple
Leistungsfähige intuitive Mathematiksoftware
• Maple für Akademiker • Maple für Studenten • Maple Learn • Maple Calculator App • Maple für Industrie und Behörden • Maple for Individuals 
													Erweiterungen für Maple
• Books & Studienführer • Maple Toolboxen • MapleNet • Kostenloser Maple-Player 
                                                    Student Success Platform
Verbesserung der Studienerfolgsquote
Maple Flow
Engineering calculations & documentation
• Maple Flow • Maple Flow Migration Assistant 
                                                    
 
                             
													  
													  
                                                     
                                                     
													 
                            


 . The change of variables automatically used in this case is:
. The change of variables automatically used in this case is: 
![Typesetting:-mprintslash([transformation := {t = `+`(tau, B), x = `+`(xi, `-`(A)), u(x, t) = upsilon(xi, tau)}], [{t = `+`(tau, B), x = `+`(xi, `-`(A)), u(x, t) = upsilon(xi, tau)}])](PDE/PDE_5.gif)
![PDEtools:-dchange(transformation, [pde__1, iv__1], {tau, upsilon, xi}); 1](PDE/PDE_6.gif)
![Typesetting:-mprintslash([[diff(upsilon(xi, tau), tau) = `+`(`*`(`/`(1, 4), `*`(diff(upsilon(xi, tau), `$`(xi, 2))))), upsilon(0, tau) = 0, upsilon(xi, 0) = 10]], [[diff(upsilon(xi, tau), tau) = `+`(`...](PDE/PDE_7.gif)
![`assuming`([pdsolve([pde__1, iv__1])], [`<`(abs(A), x), `<`(abs(B), t)])](PDE/PDE_8.gif)



![`assuming`([pdsolve([pde__2, iv__2])], [`<`(0, mu), `<`(0, t)])](PDE/PDE_12.gif)


)(x, 1) = `/`(1, 2); -1](PDE/PDE_15.gif)
![`assuming`([pdsolve([pde__3, iv__3])], [`<`(0, t)])](PDE/PDE_16.gif)


)(1, t) = 0, u(x, 0) = exp(`+`(`-`(`*`(`^`(x, 2))))), (D[2](u))(x, 0) = 0; -1](PDE/PDE_19.gif)
![`assuming`([pdsolve([pde__4, iv__4])], [`<`(1, x), `<`(0, t)])](PDE/PDE_20.gif)


)(x, 1) = h(x); -1](PDE/PDE_23.gif)
![pdsolve([pde__5, iv__5])](PDE/PDE_24.gif)


![[0, 0, 0]](PDE/PDE_27.gif)
![methods = [method__1, method__2, () .. ()]](PDE/PDE_28.gif) to be tried in the order indicated, or to be excluded, as in
 to be tried in the order indicated, or to be excluded, as in ![exclude = [method__1, method__2, () .. ()]](PDE/PDE_29.gif) . The methods and sub-methods available are organized in a table,
. The methods and sub-methods available are organized in a table,  
 
![[1], [2], [3], [2,](PDE/PDE_32.gif)
![`pdsolve/BC/methods`[1]](PDE/PDE_33.gif)

![`pdsolve/BC/methods`[2]](PDE/PDE_35.gif)


 ):
): 





![pdsolve([pde__6, iv__6])](PDE/PDE_45.gif)

![pdsolve([pde__6, iv__6], method = Fourier)](PDE/PDE_47.gif)



![pdsolve([pde__7, iv__7])](PDE/PDE_51.gif)

![pdsolve([pde__7, iv__7], method = Fourier)](PDE/PDE_53.gif)


![Typesetting:-mprintslash([u(x, y) = `+`(`/`(`*`(`/`(1, 2), `*`(Int(exp(`+`(`-`(`*`(s, `*`(y))), `*`(I, `*`(s, `*`(x))))), s = `+`(`-`(infinity)) .. infinity))), `*`(Pi)))], [u(x, y) = `+`(`/`(`*`(`/`(...](PDE/PDE_56.gif)
![pdsolve([pde__7, iv__7], method = Generic)](PDE/PDE_57.gif)

![`+`(tan(lambda[n]), lambda[n]) = 0](PDE/PDE_59.gif) .
.  
)(1, theta, t) = 0, u(r, 0, t) = 0, u(r, Pi, t) = 0, u(r, theta, 0) = `*`(`+`(r, `-`(`*`(`/`(1, 3), `*`(`^`(r, 3))))), `*`(sin(theta))); -1](PDE/PDE_61.gif)
![pdsolve([pde__8, iv__8])](PDE/PDE_62.gif)

 satisfies
 satisfies ![`+`(BesselJ(1, lambda[n]), `*`(BesselJ(2, lambda[n]), `*`(lambda[n]))) = 0](PDE/PDE_65.gif) . When
. When  is the root of one single
 is the root of one single  or
 or  function of integer order, the Maple functions
 function of integer order, the Maple functions  and
 and  are used instead. That is the case, for instance, if we slightly modify this problem changing the first boundary condition to be
 are used instead. That is the case, for instance, if we slightly modify this problem changing the first boundary condition to be  instead of
 instead of )(1, theta, t) = 0](PDE/PDE_72.gif) 
 
![pdsolve([pde__8, `iv__8.1`])](PDE/PDE_74.gif)


)(1, t)) = 10, u(x, 0) = `+`(`-`(`*`(`/`(40, 3), `*`(`^`(x, 2)))), `*`(`/`(45, 2), `*`(x)), 5); -1](PDE/PDE_77.gif)
![pdsolve([pde__9, iv__9])](PDE/PDE_78.gif)


 + ...,  where each
 + ...,  where each  is a solution of the PDE with all but one of the BC homogenized.
 is a solution of the PDE with all but one of the BC homogenized. 

![pdsolve([pde__10, iv__10])](PDE/PDE_85.gif)



)(x, 0) = `*`(`^`(x, 2)); -1](PDE/PDE_89.gif)
![pdsolve([pde__11, iv__11])](PDE/PDE_90.gif)



![pdsolve([pde__12, iv__12]); 1](PDE/PDE_94.gif)


)(0, y) = `+`(`-`(`*`(2, `*`(sin(y))))); -1](PDE/PDE_97.gif)
![pdsolve([pde__13, iv__13]); 1](PDE/PDE_98.gif)

![infolevel[pdsolve] := 2; 1](PDE/PDE_100.gif)
![Typesetting:-mprintslash([infolevel[pdsolve] := 2], [2])](PDE/PDE_101.gif)


![pdsolve([pde__14, iv__14]); 1](PDE/PDE_104.gif)



![infolevel[pdsolve] := 1; -1](PDE/PDE_108.gif)

)(0, t) = 0, (D[1](u))(1, t) = 1, u(x, 0) = `+`(`*`(`/`(1, 2), `*`(`^`(x, 2))), x); -1](PDE/PDE_110.gif)
![pdsolve([pde__15, iv__15])](PDE/PDE_111.gif)


![[0, 0, 0, `+`(`/`(1, 2), Sum(`+`(`/`(`*`(2, `*`(cos(`*`(n, `*`(Pi, `*`(x)))), `*`(`+`(`-`(1), `^`(-1, n))))), `*`(`^`(Pi, 2), `*`(`^`(n, 2))))), n = 1 .. infinity), `-`(x))]](PDE/PDE_114.gif)
 is satisfied, we plot the first 1000 terms of the series solution with
 is satisfied, we plot the first 1000 terms of the series solution with  and make sure that it coincides with the plot of the right-hand side of the initial condition
 and make sure that it coincides with the plot of the right-hand side of the initial condition  . Expected: the two plots superimposed on each other
. Expected: the two plots superimposed on each other 


)(alpha, t) = 0, u(x, beta) = `+`(`*`(10, `*`(exp(`+`(`-`(`*`(`^`(x, 2)))))))); -1](PDE/PDE_121.gif)
![`assuming`([pdsolve([pde__16, iv__16], u(x, t))], [`<`(0, x), `<`(0, t)])](PDE/PDE_122.gif)


)(0, t) = 0, u(x, 0) = 0, (D[2](u))(x, 0) = `*`(`^`(x, 3)); -1](PDE/PDE_125.gif)
![`assuming`([pdsolve([pde__17, iv__17])], [`<`(0, x), `<`(0, t)])](PDE/PDE_126.gif)
![Typesetting:-mprintslash([u(x, t) = PIECEWISE([`+`(`*`(9, `*`(`^`(t, 3), `*`(x))), `*`(t, `*`(`^`(x, 3)))), `<`(`+`(`*`(3, `*`(t))), x)], [`+`(`*`(`/`(27, 4), `*`(`^`(t, 4))), `*`(`/`(9, 2), `*`(`^`(t...](PDE/PDE_127.gif)

)(x, 0) = 1; -1](PDE/PDE_129.gif)
![pdsolve([pde__18, iv__18])](PDE/PDE_130.gif)


)(x, 0) = 0; -1](PDE/PDE_133.gif)
![pdsolve([pde__19, iv__19])](PDE/PDE_134.gif)



 approaches 0:
 approaches 0: 
)(1, theta) = f(theta); -1](PDE/PDE_140.gif)
![`assuming`([pdsolve([pde__20, iv__20], HINT = boundedseries(r = [0]))], [`<=`(0, theta), `<=`(theta, `+`(`*`(`/`(1, 2), `*`(Pi)))), `<=`(0, r), `<=`(r, 1)])](PDE/PDE_141.gif)

 :
: 

![`assuming`([pdsolve([pde__21, iv__21], HINT = boundedseries(y = infinity))], [`>`(a, 0)])](PDE/PDE_146.gif)


)(x, 0) = 0; -1](PDE/PDE_149.gif)
![pdsolve([pde__22, iv__22])](PDE/PDE_150.gif)

 is now handled by pdsolve:
is now handled by pdsolve: 

![`assuming`([pdsolve([pde__23, iv__23])], [`<`(0, a)])](PDE/PDE_155.gif)
![Typesetting:-mprintslash([u(x, y) = Sum(`+`(`-`(`/`(`*`(2, `*`(Pi, `*`(n, `*`(PIECEWISE([-1, a = `*`(Pi, `*`(n))], [`/`(`*`(sin(a), `*`(`^`(-1, n))), `*`(`+`(`*`(Pi, `*`(n)), `-`(a)))), otherwise]), `...](PDE/PDE_156.gif)
 Previously, pdsolve returned a series starting at
Previously, pdsolve returned a series starting at  , when the limit of the
, when the limit of the  term is 0.
 term is 0. 

![`assuming`([pdsolve([pde__24, iv__24])], [`<`(0, k)])](PDE/PDE_162.gif)



![pdsolve([pde__25, iv__25])](PDE/PDE_166.gif)

)(x1, x2, x3, t)), `-`((D[1, 3](w))(x1, x2, x3, t)), `-`((D[3, 3](w))(x1, x2, x3, t)), (D[2, 3](w))(x1, x2, x3, t)) = 0; -1](PDE/PDE_168.gif)

![pdsolve([pde__26, iv__26])](PDE/PDE_170.gif)

)(x1, x2, x3, t), (D[1, 3](w))(x1, x2, x3, t), (D[3, 3](w))(x1, x2, x3, t), `-`((D[2, 3](w))(x1, x2, x3, t))); -1](PDE/PDE_172.gif)
)(x1, x2, x3, a) = `+`(`-`(`*`(x2, `*`(x3))), x1); -1](PDE/PDE_173.gif)
![pdsolve([pde__27, iv__27], w(x1, x2, x3, t))](PDE/PDE_174.gif)




![pdsolve([pde__28, iv__28])](PDE/PDE_179.gif)

 , into a surrounding medium at temperature 0 (Articolo example 6.6.3):
, into a surrounding medium at temperature 0 (Articolo example 6.6.3): 
)(0, y, t) = 0, `+`((D[1](u))(1, y, t), u(1, y, t)) = 0, u(x, 0, t) = 0, u(x, 1, t) = 0, u(x, y, 0) = `*`(`+`(1, `-`(`*`(`/`(1, 3), `*`(`^`(x, 2))))), `*`(y, `*`(`+`(1, `-`(y))))); -...](PDE/PDE_183.gif)
![`assuming`([pdsolve([pde__29, iv__29])], [`<=`(0, x), `<=`(x, 1), `<=`(0, y), `<=`(y, 1)]); 1](PDE/PDE_184.gif)



)(0, y, t) = 0, `+`((D[1](u))(1, y, t), u(1, y, t)) = 0, `+`((D[2](u))(x, 0, t), `-`(u(x, 0, t))) = 0, (D[2](u))(x, 1, t) = 0, u(x, y, 0) = `*`(`+`(1, `-`(`*`(`/`(1, 3), `*`(`^`(x, 2...](PDE/PDE_188.gif)
)(0, y, t) = 0, `+`((D[1](u))(1, y, t), u(1, y, t)) = 0, `+`((D[2](u))(x, 0, t), `-`(u(x, 0, t))) = 0, (D[2](u))(x, 1, t) = 0, u(x, y, 0) = `*`(`+`(1, `-`(`*`(`/`(1, 3), `*`(`^`(x, 2...](PDE/PDE_189.gif)
)(0, y, t) = 0, `+`((D[1](u))(1, y, t), u(1, y, t)) = 0, `+`((D[2](u))(x, 0, t), `-`(u(x, 0, t))) = 0, (D[2](u))(x, 1, t) = 0, u(x, y, 0) = `*`(`+`(1, `-`(`*`(`/`(1, 3), `*`(`^`(x, 2...](PDE/PDE_190.gif)
![pdsolve([pde__30, iv__30])](PDE/PDE_191.gif)



