 
													Maple
Leistungsfähige intuitive Mathematiksoftware
• Maple für Akademiker • Maple für Studenten • Maple Learn • Maple Calculator App • Maple für Industrie und Behörden • Maple for Individuals 
													Erweiterungen für Maple
• Books & Studienführer • Maple Toolboxen • MapleNet • Kostenloser Maple-Player 
                                                    Student Success Platform
Verbesserung der Studienerfolgsquote
Maple Flow
Engineering calculations & documentation
• Maple Flow • Maple Flow Migration Assistant 
                                                    
 
                             
													  
													  
                                                     
                                                     
													 
                            
 is sought. The problem is represented as follows (Articolo, p.396):
 is sought. The problem is represented as follows (Articolo, p.396): ![pde[1] := diff(u(x, y, t), t) = `+`(`*`(`/`(1, 10), `*`(diff(u(x, y, t), x, x))), `*`(`/`(1, 10), `*`(diff(u(x, y, t), y, y)))); -1](PDEs/PDEs_2.gif)
![iv[1] := u(0, y, t) = 0, u(1, y, t) = 0, u(x, 0, t) = 0, u(x, 1, t) = 0, u(x, y, 0) = `*`(x, `*`(`+`(1, `-`(x)), `*`(`+`(1, `-`(y)), `*`(y)))); -1](PDEs/PDEs_3.gif)
![pdsolve([pde[1], iv[1]], u(x, y, t))](PDEs/PDEs_4.gif)

 together with its series representation (below we use the first 10000 terms in the solution) in the corresponding range, in this case
 together with its series representation (below we use the first 10000 terms in the solution) in the corresponding range, in this case  
 

![pde[2] := diff(u(x, y, t), t) = `+`(`*`(`/`(1, 10), `*`(diff(u(x, y, t), x, x))), `*`(`/`(1, 10), `*`(diff(u(x, y, t), y, y))), `-`(`*`(`/`(1, 5), `*`(u(x, y, t))))); -1](PDEs/PDEs_12.gif)
![iv[2] := (D[1](u))(0, y, t) = 0, u(1, y, t) = 0, u(x, 0, t) = 0, (D[2](u))(x, 1, t) = 0, u(x, y, 0) = `*`(`+`(`-`(`*`(`^`(x, 2))), 1), `*`(`+`(1, `-`(`*`(`/`(1, 2), `*`(y)))), `*`(y))); -1](PDEs/PDEs_13.gif)
![pdsolve([pde[2], iv[2]], u(x, y, t))](PDEs/PDEs_14.gif)

 and its series representation in the domain, which in this case is again
 and its series representation in the domain, which in this case is again  :
: 

![pde[3] := diff(u(x, y, t), t, t) = `+`(`*`(`/`(1, 4), `*`(diff(u(x, y, t), x, x))), `*`(`/`(1, 4), `*`(diff(u(x, y, t), y, y)))); -1](PDEs/PDEs_22.gif)
 unsecured, boundaries
 unsecured, boundaries  secured, and initial conditions as follows:
 secured, and initial conditions as follows: ![iv[3] := (D[1](u))(0, y, t) = 0, (D[1](u))(Pi, y, t) = 0, u(x, 0, t) = 0, u(x, Pi, t) = 0, (D[3](u))(x, y, 0) = 0, u(x, y, 0) = `*`(x, `*`(y, `*`(`+`(Pi, `-`(y))))); -1](PDEs/PDEs_25.gif)
![pdsolve([pde[3], iv[3]], u(x, y, t))](PDEs/PDEs_26.gif)

 and its series representation:
 and its series representation: 

![pde[4] := diff(u(x, y, t), t, t) = `+`(`*`(`/`(1, 4), `*`(diff(u(x, y, t), x, x))), `*`(`/`(1, 4), `*`(diff(u(x, y, t), y, y))), `-`(`*`(`/`(1, 10), `*`(diff(u(x, y, t), t))))); -1](PDEs/PDEs_34.gif)
 held secure, boundaries
 held secure, boundaries  unsecure, and initial conditions as follows:
 unsecure, and initial conditions as follows: ![iv[4] := u(0, y, t) = 0, (D[1](u))(1, y, t) = 0, u(x, 0, t) = 0, (D[2](u))(x, 1, t) = 0, u(x, y, 0) = 0, (D[3](u))(x, y, 0) = `*`(x, `*`(`+`(1, `-`(`*`(`/`(1, 2), `*`(x)))), `*`(`+`(1, `-`(`*`(`/`(1, ...](PDEs/PDEs_37.gif)
![pdsolve([pde[4], iv[4]], u(x, y, t))](PDEs/PDEs_38.gif)

)(x, y, 0) = `*`(x, `*`(`+`(1, `-`(`*`(`/`(1, 2), `*`(x)))), `*`(`+`(1, `-`(`*`(`/`(1, 2), `*`(y)))), `*`(y))))](PDEs/PDEs_41.gif) and its series representation:
 and its series representation: 

![pde[5] := diff(u(x, t), t) = `*`(k, `*`(diff(u(x, t), x, x))); -1](PDEs/PDEs_46.gif)
![iv[5] := u(x, 0) = f(x), u(`+`(`-`(l)), t) = u(l, t), (D[1](u))(`+`(`-`(l)), t) = (D[1](u))(l, t); -1](PDEs/PDEs_47.gif)
![`assuming`([pdsolve([pde[5], iv[5]], u(x, t))], [`<`(0, l)])](PDEs/PDEs_48.gif)

![pde[6] := `+`(`/`(`*`(diff(`*`(r, `*`(diff(u(r, theta), r))), r)), `*`(r)), `/`(`*`(diff(u(r, theta), theta, theta)), `*`(`^`(r, 2)))) = 0; -1](PDEs/PDEs_50.gif)
![iv[6] := u(a, theta) = f(theta), u(r, `+`(`-`(Pi))) = u(r, Pi), (D[2](u))(r, `+`(`-`(Pi))) = (D[2](u))(r, Pi); -1](PDEs/PDEs_51.gif)
![`assuming`([pdsolve([pde[6], iv[6]], u(r, theta), HINT = boundedseries)], [`<`(0, a)])](PDEs/PDEs_52.gif)

![pde[7] := diff(u(x, t), t) = diff(u(x, t), x, x); -1](PDEs/PDEs_54.gif)
![iv[7] := u(x, 0) = f(x), u(-1, t) = 0, u(1, t) = 0; -1](PDEs/PDEs_55.gif)
![pdsolve([pde[7], iv[7]], u(x, t))](PDEs/PDEs_56.gif)

![pde[8] := diff(u(x, t), t) = diff(u(x, t), x, x); -1](PDEs/PDEs_59.gif)
![iv[8] := u(0, t) = 20, u(1, t) = 50, u(x, 0) = 0; -1](PDEs/PDEs_60.gif)
![pdsolve([pde[8], iv[8]], u(x, t))](PDEs/PDEs_61.gif)

![pde[9] := `+`(diff(u(x, t), t), `*`(k, `*`(diff(u(x, t), x, x))), k); -1](PDEs/PDEs_63.gif)
![iv[9] := u(x, 0) = f(x), u(0, t) = A, u(L, t) = B; -1](PDEs/PDEs_64.gif)
![pdsolve([pde[9], iv[9]], u(x, t))](PDEs/PDEs_65.gif)

 :
: ![pde[10] := diff(u(x, t), t) = `+`(`*`(k, `*`(diff(u(x, t), x, x))), f(x, t)); -1](PDEs/PDEs_69.gif)
![iv[10] := u(0, t) = 0, u(l, t) = 0, u(x, 0) = g(x); -1](PDEs/PDEs_70.gif)
![`assuming`([pdsolve([pde[10], iv[10]], u(x, t))], [`and`(`<=`(0, x), `<=`(x, l))]); 1](PDEs/PDEs_71.gif)

![pde[11] := `+`(`/`(`*`(`+`(diff(u(r, theta), r), `*`(r, `*`(diff(u(r, theta), r, r))))), `*`(r)), `/`(`*`(diff(u(r, theta), theta, theta)), `*`(`^`(r, 2)))) = 0; -1](PDEs/PDEs_74.gif)
![iv[11] := u(0, theta) = 0, u(1, theta) = `*`(theta, `*`(`+`(`*`(`/`(1, 3), `*`(Pi)), `-`(theta)))), u(r, 0) = 0, u(r, `+`(`*`(`/`(1, 3), `*`(Pi)))) = 0; -1](PDEs/PDEs_75.gif)
![`assuming`([pdsolve([pde[11], iv[11]], u(r, theta))], [`<`(0, r), `and`(`<`(0, theta), `<`(theta, `+`(`*`(`/`(1, 3), `*`(Pi)))))])](PDEs/PDEs_76.gif)

 :
: ![pde[12] := `+`(`/`(`*`(diff(u(r, theta), r)), `*`(r)), diff(u(r, theta), r, r), `/`(`*`(diff(u(r, theta), theta, theta)), `*`(`^`(r, 2)))) = 0; -1](PDEs/PDEs_79.gif)
![iv[12] := u(1, theta) = f(theta), u(r, 0) = 0, u(r, `+`(`*`(`/`(1, 3), `*`(Pi)))) = 0; -1](PDEs/PDEs_80.gif)
![`assuming`([pdsolve([pde[12], iv[12]])], [`and`(`<`(0, r), `<=`(r, 1)), `and`(`<`(0, theta), `<=`(theta, `+`(`*`(`/`(1, 3), `*`(Pi)))))])](PDEs/PDEs_81.gif)

![`assuming`([pdsolve([pde[12], iv[12]], HINT = boundedseries)], [`and`(`<`(0, r), `<=`(r, 1)), `and`(`<`(0, theta), `<=`(theta, `+`(`*`(`/`(1, 3), `*`(Pi)))))])](PDEs/PDEs_83.gif)

![pde[13] := `+`(`/`(`*`(`+`(diff(u(r, theta), r), `*`(r, `*`(diff(u(r, theta), r, r))))), `*`(r)), `/`(`*`(diff(u(r, theta), theta, theta)), `*`(`^`(r, 2)))) = 0; -1](PDEs/PDEs_85.gif)
![iv[13] := u(1, theta) = `*`(theta, `*`(`+`(1, `-`(`/`(`*`(`/`(3, 2), `*`(theta)), `*`(Pi)))))), u(r, 0) = 0, (D[2](u))(r, `+`(`*`(`/`(1, 3), `*`(Pi)))) = 0; -1](PDEs/PDEs_86.gif)
![pdsolve([pde[13], iv[13]], u(r, theta), HINT = boundedseries)](PDEs/PDEs_87.gif)

![pde[14] := `+`(diff(u(x, y), x, x), diff(u(x, y), y, y)) = 0; -1](PDEs/PDEs_89.gif)
![iv[14] := u(0, y) = `+`(`-`(`*`(`^`(y, 2))), y), (D[1](u))(1, y) = 0, u(x, 0) = 0, u(x, 1) = `*`(x, `*`(`+`(1, `-`(`*`(`/`(1, 2), `*`(x)))))); -1](PDEs/PDEs_90.gif)
![`assuming`([pdsolve([pde[14], iv[14]], u(x, y))], [`and`(`<`(0, x), `<=`(x, 1))])](PDEs/PDEs_91.gif)

![pde[15] := `+`(diff(u(x, y), x), `*`(u(x, y), `*`(diff(u(x, y), y)))) = 0; -1](PDEs/PDEs_94.gif)
![iv[15] := u(x, 0) = `/`(1, `*`(`+`(x, 1))); -1](PDEs/PDEs_95.gif)
![pdsolve([pde[15], iv[15]], u(x, y))](PDEs/PDEs_96.gif)

![pde[16] := `+`(`*`(100, `*`(diff(u(x, t), x, x)))) = diff(u(x, t), t, t); -1](PDEs/PDEs_98.gif)
![iv[16] := u(0, t) = 0, u(2, t) = 0, u(x, 0) = `+`(`*`(32, `*`(sin(`*`(Pi, `*`(x))))), `*`(`^`(e, 2), `*`(sin(`+`(`*`(3, `*`(Pi, `*`(x))))))), `*`(25, `*`(sin(`+`(`*`(6, `*`(Pi, `*`(x)))))))), (D[2](u)...](PDEs/PDEs_99.gif)
![`assuming`([pdsolve([pde[16], iv[16]], u(x, t))], [`and`(`<`(0, x), `<=`(x, 2))])](PDEs/PDEs_100.gif)

![pde[17] := `+`(`*`(4, `*`(diff(u(x, t), x, x)))) = diff(u(x, t), t, t); -1](PDEs/PDEs_103.gif)
![iv[17] := u(0, t) = 0, u(Pi, t) = 0, u(x, 0) = 0, (D[2](u))(x, 0) = 6; -1](PDEs/PDEs_104.gif)
![`assuming`([pdsolve([pde[17], iv[17]], u(x, t))], [`and`(`<`(0, x), `<=`(x, Pi))])](PDEs/PDEs_105.gif)
