|
Critical Points and the Second Derivative Test
|
|
|
Description
|
|
Determine and classify the critical points of a multivariate function.
|
Critical Points and the Second Derivative Test
|
Objective Function
|
>
|
|
| (1) |
|
List of Independent Variables
|
>
|
|
| (2) |
|
Equations
|
>
|
|
| (3) |
|
Critical Points
|
>
|
![__temp__ := remove(has, solve([2*__x__+3*__y__^2, 6*__x__*__y__-15*__y__^2], __v__, Explicit), I); -1; convert({seq(eval(__v__, __temp__[__k__]), __k__ = 1 .. nops(__temp__))}, list)](/support/helpjp/helpview.aspx?si=3958/file05494/math76.png)
|
| (4) |
|
Second Derivative Test
|
>
|
|
| (5) |
|
Hessians and their Eigenvalues
|
>
|
![Temp := [Student[MultivariateCalculus][SecondDerivativeTest](__x__^2+3*__x__*__y__^2-5*__y__^3, v = [[0, 0], [-25/6, -5/3]], output = hessian)]; for k to nops(Temp) do Temp[k], convert(LinearAlgebra[Eigenvalues](Temp[k]), list) end do](/support/helpjp/helpview.aspx?si=3958/file05494/math100.png)
|
| (6) |
|
|
|
|
|
Download Help Document
Was this information helpful?