EllipticNome - Nome function q(k)
|
Calling Sequence
|
|
EllipticNome(k)
|
|
Parameters
|
|
k
|
-
|
expression denoting a complex number
|
|
|
|
|
Description
|
|
>
|
FunctionAdvisor(definition, EllipticF)[1];
|
| (1) |
>
|
FunctionAdvisor(definition, JacobiSN)[1];
|
| (2) |
>
|
FunctionAdvisor(definition, JacobiAM);
|
| (3) |
|
EllipticNome computes the corresponding Nome q, , entering the definition of the related (see below) Jacobi Theta functions, for instance:
|
>
|
FunctionAdvisor(definition, JacobiTheta1)[1];
|
| (4) |
|
Alternatively, given the Nome q, , it is possible to compute the corresponding Modulus k, , using EllipticModulus, which is the inverse function of EllipticNome.
|
|
EllipticNome is defined in terms of the Complete Elliptic integral of the first kind EllipticK by:
|
>
|
FunctionAdvisor( definition, EllipticNome );
|
| (5) |
>
|
JacobiSN(z,k) = (1/(k^2))^(1/4) * JacobiTheta1(1/2*Pi*z/EllipticK(k),EllipticNome(k)) / JacobiTheta4(1/2*Pi*z/EllipticK(k),EllipticNome(k));
|
| (6) |
|
|
Examples
|
|
>
|
|
| (7) |
>
|
|
| (8) |
>
|
|
| (9) |
>
|
|
| (10) |
>
|
|
| (11) |
>
|
|
| (12) |
>
|
|
|
|
Download Help Document
Was this information helpful?