Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
hypergeom - generalized hypergeometric function
Calling Sequence
hypergeom([n1, n2, ... ], [d1, d2, ... ], z)
Hypergeom([n1, n2, ... ], [d1, d2, ... ], z)
Parameters
[n1, n2, ...]
-
list of upper parameters (may be empty)
[d1, d2, ...]
list of lower parameters (may be empty)
z
expression
Description
Let , , and . The hypergeom(n, d, z) calling sequence is the generalized hypergeometric function . This function is frequently denoted by .
Formally, is defined by the series
For the definition of the symbol, see pochhammer.
If some is a non-positive integer, the series is finite (that is, is a polynomial in ).
If some is a non-positive integer, the function is undefined for all non-zero , unless there is also a negative upper parameter of smaller absolute value, in which case the previous rule applies.
For the remainder of this description, assume no or is a non-positive integer.
When , this series converges for all complex , and hence defines everywhere.
When , the series converges for . is then defined for by analytic continuation. The point is a branch point, and the interval (1,infinity) is the branch cut.
When the series diverges for all . In this case, the series is interpreted as the asymptotic expansion of around . The positive real axis is the branch cut.
Hypergeom is the unevaluated form of hypergeom (that is, it returns unevaluated because it is the inert form of this function). Use value to evaluate a call to Hypergeom, or evalf to compute a floating-point approximate value. See also simplify and convert[StandardFunctions].
Examples
To compute floating point values, use evalf or include a floating point number in the function call.
The simplify function is used to simplify expressions which contain hypergeometric functions.
The inert form of Hypergeom can be evaluated by the function value.
See Also
convert, convert[elementary], convert[StandardFunctions], evalf, initialfunctions, pochhammer, simplify/hypergeom, value
Download Help Document