Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
VectorCalculus[Norm] - compute the norm of a Vector or vector field
Calling Sequence
Norm(v, p)
Parameters
v
-
Vector(algebraic); Vector whose norm is computed
p
(optional) nonnegative, infinity, or identical(Euclidean); the norm to compute
Description
The Norm(v, p) command computes the p-norm of the Vector or vector field v. If p is omitted, it defaults to 2.
If v is a RootedVector, its norm is computed in the corresponding vector space, that is, relative to the root point of that vector space. See VectorCalculus details for more information about rooted vectors.
If v is a vector field, the result is a procedure which at any point (Vector) w evaluates to the p-norm of the value of v at w.
The 2-norm can also be specified using the value Euclidean for the parameter p.
If , then the value computed by this command defines a metric, but not a norm. See LinearAlgebra[Norm] for details.
Examples
See Also
LinearAlgebra[Norm], Physics, PositionVector, RootedVector, Vector, VectorCalculus, VectorCalculus details, VectorCalculus[Normalize], VectorCalculus[SetCoordinates], VectorField
Download Help Document