Student[NumericalAnalysis][RemainderTerm] - return the remainder term from an interpolation structure
|
Calling Sequence
|
|
RemainderTerm(p, opts)
|
|
Parameters
|
|
p
|
-
|
a POLYINTERP structure
|
opts
|
-
|
(optional) equation(s) of the form keyword=value, where keyword is: errorboundvar; options for returning the remainder term
|
|
|
|
|
Description
|
|
•
|
The RemainderTerm command returns the remainder term from the POLYINTERP structure p.
|
|
|
Options
|
|
|
The name to assign to the independent variable in the remainder term.
|
|
|
Notes
|
|
•
|
POLYINTERP structures that were created with the CubicSpline command cannot be used with the RemainderTerm command, since they do not have a remainder term.
|
•
|
A remainder term is also called an error term.
|
|
|
Examples
|
|
>
|
|
>
|
|
| (1) |
>
|
![](/support/helpjp/helpview.aspx?si=4057/file05104/math127.png)
|
>
|
|
![`&where`((1/5040)*(-2^(2-xi)*ln(2)^7*cos(Pi*xi)-7*2^(2-xi)*ln(2)^6*sin(Pi*xi)*Pi+21*2^(2-xi)*ln(2)^5*cos(Pi*xi)*Pi^2+35*2^(2-xi)*ln(2)^4*sin(Pi*xi)*Pi^3-35*2^(2-xi)*ln(2)^3*cos(Pi*xi)*Pi^4-21*2^(2-xi)*ln(2)^2*sin(Pi*xi)*Pi^5+7*2^(2-xi)*ln(2)*cos(Pi*xi)*Pi^6+2^(2-xi)*sin(Pi*xi)*Pi^7)*x*(x-.5)*(x-1.0)*(x-1.5)*(x-2.0)*(x-2.5)*(x-3.0), {0. <= xi and xi <= 3.0})](/support/helpjp/helpview.aspx?si=4057/file05104/math134.png)
| (2) |
>
|
|
| (3) |
>
|
![](/support/helpjp/helpview.aspx?si=4057/file05104/math145.png)
|
>
|
|
![`&where`((1/720)*(.120*exp(.1*xi^2)+0.720e-1*xi^2*exp(.1*xi^2)+0.480e-2*xi^4*exp(.1*xi^2)+0.64e-4*xi^6*exp(.1*xi^2))*(x-1.)^2*(x-1.5)^2*(x-2.)^2, {1. <= xi and xi <= 2.})](/support/helpjp/helpview.aspx?si=4057/file05104/math152.png)
| (4) |
|
|
Download Help Document
Was this information helpful?