OreTools[Modular][Add] - add two Ore polynomials
OreTools[Modular][Minus] - subtract two Ore polynomials
OreTools[Modular][ScalarMultiply] - multiply an Ore polynomial on the left by a scalar
OreTools[Modular][Multiply] - multiply two Ore polynomials
|
Calling Sequence
|
|
Modular[Add](Ore1, Ore2, p)
Modular[Minus](Ore1, Ore2, p)
Modular[ScalarMultiply](s, Ore1, p)
Modular[Multiply](Ore1, Ore2, p, A)
|
|
Parameters
|
|
Ore1, Ore2
|
-
|
Ore polynomials; to define an Ore polynomial, use the OrePoly structure
|
s
|
-
|
scalar from the coefficient domain
|
p
|
-
|
prime
|
A
|
-
|
Ore algebra; to define an Ore algebra, use the SetOreRing command
|
|
|
|
|
Description
|
|
•
|
The Modular[Add](Ore1, Ore2, m) calling sequence adds the two Ore polynomials Ore1 and Ore2 modulo p.
|
•
|
The Modular[Minus](Ore1, Ore2, p) calling sequence subtracts the Ore polynomial Ore2 from the Ore polynomial Ore1 modulo p.
|
•
|
The Modular[ScalarMultiply](s, Ore1, p) calling sequence multiplies the Ore polynomial Ore1 on the left by the scalar s modulo p.
|
•
|
The Modular[Multiply](Ore1, Ore2, p, A) calling sequence multiplies the two Ore polynomials Ore1 and Ore2 in the Ore algebra A modulo m.
|
|
|
Examples
|
|
>
|
|
Define the shift algebra.
>
|
|
| (1) |
>
|
|
| (2) |
>
|
|
| (3) |
>
|
|
| (4) |
>
|
|
| (5) |
>
|
|
| (6) |
>
|
|
| (7) |
|
|