OreTools[Modular][GCRD] - compute the GCRD of two Ore polynomials modulo a prime
OreTools[Modular][LCLM] - compute the LCLM of a sequence of Ore polynomials modulo a prime
|
Calling Sequence
|
|
Modular[GCRD](Ore1, Ore2, p, A)
Modular[LCLM](Ore1, Ore2, ..., Orek, p, A)
|
|
Parameters
|
|
Ore1, Ore2, ... Orek
|
-
|
Ore polynomials; to define an Ore polynomial, use the OrePoly structure
|
p
|
-
|
prime
|
A
|
-
|
Ore ring; to define an Ore ring, use the SetOreRing command
|
|
|
|
|
Description
|
|
•
|
The Modular[GCRD](Ore1, Ore2, p, A) calling sequence returns the GCRD of Ore1 and Ore2 modulo the prime p.
|
•
|
The Modular[LCLM](Ore1, Ore2, ..., Orek, p, A) calling sequence returns the GCRD of Ore1, Ore2, ..., Orek modulo the prime p.
|
|
|
Examples
|
|
>
|
|
>
|
|
| (1) |
>
|
|
| (2) |
>
|
|
| (3) |
>
|
|
| (4) |
>
|
|
| (5) |
>
|
|
| (6) |
>
|
|
| (7) |
>
|
|
| (8) |
|
|
References
|
|
|
Abramov, S.A.; Le, H.Q.; and Li, Z. "OreTools: a computer algebra library for univariate Ore polynomial rings." Technical Report CS-2003-12. School of Computer Science, University of Waterloo, 2003.
|
|
Li, Z., and Nemes, I. "A modular algorithm for computing greatest common right divisors of Ore polynomials." Proc. of ISSAC'97, pp. 282-289. Edited by W. Kuechlin. ACM Press, 1997.
|
|
|