Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Algebraic Form of Input for the GlobalOptimization Package
This help page describes the algebraic form of input for commands in the GlobalOptimization package. For general information on the input forms accepted by the GlobalOptimization package commands, see the GlobalOptimization/InputForms help page. For more information about options mentioned below, see the Optimization/Options help page.
Objective Function
Constraints
Bounds
Initial Values
Solution
Examples
The objective function must be an algebraic expression in the problem variables, for example, ⅇtan⁡x and x2+y2−3⁢x+3⁢y+3. The problem variables are the indeterminates in the objective function and, if provided, the constraints. They can also be specified using the variables option.
The constraints must be a set or list of relations. Only relations of type <= and = are allowed. An example is w=1,2≤y2+z,x≤5.
Specify the bounds as a sequence of arguments of the form vname = vrange, where vname is the name of a problem variable and vrange is its range, for example, y=-1..2. There must be exactly one bound argument for each problem variable. The endpoints of each range must evaluate to finite numeric values.
Because finite bounds are required, the assume = nonnegative option, available in the Optimization package, is not accepted by GlobalOptimization commands.
Specify the initial values using the option initialpoint = p, where p is a set or list of equalities of the form varname=value. Each varname is one of the problem variables and value is the value to which it is initially set. An example is initialpoint={x=-1.2, y=5.7}.
Maple returns the solution as a list containing the final minimum (or maximum) value and a point (the computed extremum). The point is a list containing elements of the form varname=value, where varname is a problem variable and value is its value.
with⁡GlobalOptimization:
Solve a minimization problem in two variables, x and y.
GlobalSolve⁡y2−10⁢x−5⁢y,−2⁢x4−y=−2,x=0..3,y=0..3
−12.5142127851561753,x=0.788704583952784,y=1.22609535114607
Solve a minimization problem in three variables, x, y, and z.
GlobalSolve⁡x−12+y−22+z−32,x2+y2+z2=0.5,x=0..1,y=0..1,z=0..1
9.20849737787081501,x=0.188982236070483,y=0.377964472954812,z=0.566946709694829
See Also
GlobalOptimization
GlobalOptimization/InputForms
GlobalOptimization/Options
GlobalOptimization[GlobalSolve]
Optimization
Download Help Document