 student(deprecated)/integrand - Maple Help

student

 integrand
 locate the integrand of an inert integral
 summand
 locate the summand of an inert sum Calling Sequence integrand(expr) summand(expr) Parameters

 expr - any algebraic expression Description

 • Important: The student package has been deprecated. Use the superseding commands, Student[Calculus1][Integrand] and Student[Calculus1][Summand], instead.
 • The integrand and summand commands are used to extract the integrand (summand) from an unevaluated integral (sum) respectively.
 • If expr is not an unevaluated integral or sum, but contains one or more such integrals (sums), then the set of integrands (summands) is returned.
 • If several or no integrands (summands) are found the result will be a set.
 • The command with(student,integrand) allows the use of the abbreviated form of this command.
 • The command with(student,summand) allows the use of the abbreviated form of this command. Examples

Important: The student package has been deprecated. Use the superseding commands, Student[Calculus1][Integrand] and Student[Calculus1][Summand], instead.

 > $\mathrm{with}\left(\mathrm{student}\right):$
 > $\mathrm{integrand}\left({∫}f\left(x\right)\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}x\right)$
 ${f}{}\left({x}\right)$ (1)
 > $\mathrm{summand}\left({\sum }_{i=1}^{n}\phantom{\rule[-0.0ex]{5.0px}{0.0ex}}f\left(i\right)\right)$
 ${f}{}\left({i}\right)$ (2)
 > $\mathrm{integrand}\left(x+y\right)$
 ${\varnothing }$ (3)
 > $\mathrm{summand}\left({\sum }_{i=1}^{m}\phantom{\rule[-0.0ex]{5.0px}{0.0ex}}f\left(i\right)+{\sum }_{i=m}^{n}\phantom{\rule[-0.0ex]{5.0px}{0.0ex}}f\left(i\right)\right)$
 ${f}{}\left({i}\right)$ (4)
 > $\mathrm{integrand}\left(\mathrm{Doubleint}\left(f\left(x,y\right),x,y\right)\right)$
 ${f}{}\left({x}{,}{y}\right)$ (5)
 > $\mathrm{integrand}\left(\mathrm{Doubleint}\left(f\left(x,y\right),x,y\right)+{∫}g\left(x\right)\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}x\right)$
 $\left\{{f}{}\left({x}{,}{y}\right){,}{g}{}\left({x}\right)\right\}$ (6)
 > $\mathrm{summand}\left({\sum }_{j=1}^{n}\phantom{\rule[-0.0ex]{5.0px}{0.0ex}}{\sum }_{i=1}^{j}\phantom{\rule[-0.0ex]{5.0px}{0.0ex}}ij\right)$
 ${i}{}{j}$ (7)