numtheory(deprecated)/factorEQ - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

Home : Support : Online Help : numtheory(deprecated)/factorEQ

numtheory(deprecated)

  

factorEQ

  

integer factorization in Z(sqrt(d)) where Z(sqrt(d)) is a Euclidean ring

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

factorEQ(m, d)

Parameters

m

-

integer, list or set of integers in

d

-

integer where  is a Euclidean ring

Description

• 

Important: The numtheory package has been deprecated.  Use the superseding command NumberTheory[FactorNormEuclidean] instead.

• 

The factorEQ function returns the integer factorization of m in the Euclidean ring .

• 

Given integers  and  of , with , there is an integer  such that ,  is true in . In these circumstances we say that there is a Euclidean algorithm in  and that the ring is Euclidean.

• 

Euclidean quadratic number fields have been completely determined. They are  where d = -1, -2, -3, -7, -11, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, and 73.

• 

When ,, all integers of  have the form , where  and  are rational integers. When , all integers of  are of the form  where  and  are rational integers and of the same parity.

• 

The answer is in the form:  such that  where  are distinct prime factors of m,  are non-negative integer numbers,  is a unit in . For real Euclidean quadratic rings, i.e.  d > 0,  is represented under the form  or  or  or  where  is the fundamental unit, and  is a positive integer.

• 

The expand function may be applied to cause the factors to be multiplied together again.

Examples

Important: The numtheory package has been deprecated.  Use the superseding command NumberTheory[FactorNormEuclidean] instead.

(1)

(2)

(3)

(4)

(5)

(6)

See Also

expand

GIfactor

ifactor

NumberTheory[FactorNormEuclidean]

numtheory(deprecated)[sq2factor]

 


Download Help Document